The role of Yersinia pestis antigens in reception of the plague diagnostic bacteriophage L-413C

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The role of surface antigens of Yersinia pestis in reception of the phage L-413C was experimentally evaluated. Based on the methods of the phage inactivation after its co-incubation with the soluble or bead-bounded antigens, an importance of LPS from the plague microbe in the phage reception and inability to bind a capsular antigen F1, Ail protein and two autotransporters YapF and YapM were confirmed. The native and recombinant PsaA, being solved, significantly inhibited the lytic activity of the phage in comparison with the bead-bound antigens. The knockout EV cells (ΔpsaA) are able to bind the phage particles as well as the wild strain. The use of three methods to evaluate the role of PsaA antigen in phage L-413C reception gave contradictory results. On the one hand the reactive domains of PsaA are able to interact with phage particles in solution. At the same time, these domains appear to determine nonspecific binding of PsaA protein to the underlying bacterial cell structures and polystyrene microsphere, preventing phage adhesion.

全文:

受限制的访问

作者简介

A. Byvalov

Vyatka State University; Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”

编辑信件的主要联系方式.
Email: byvalov@nextmail.ru

Institute of Physiology of the Komi Scientific Center

俄罗斯联邦, Kirov, 610000; Syktyvkar, 167982

L. Dudina

Vyatka State University; Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”

Email: byvalov@nextmail.ru

Institute of Physiology of the Komi Scientific Center

俄罗斯联邦, Kirov, 610000; Syktyvkar, 167982

T. Kravchenko

The Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology”

Email: byvalov@nextmail.ru
俄罗斯联邦, Obolensk, 142279

S. Ivanov

The Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology”

Email: byvalov@nextmail.ru
俄罗斯联邦, Obolensk, 142279

I. Konyshev

Vyatka State University; Federal Research Center “Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences”

Email: byvalov@nextmail.ru

Institute of Physiology of the Komi Scientific Center

俄罗斯联邦, Kirov, 610000; Syktyvkar, 167982

N. Morozova

Vyatka State University

Email: byvalov@nextmail.ru
俄罗斯联邦, Kirov, 610000

A. Chernyadiev

Vyatka State University

Email: byvalov@nextmail.ru
俄罗斯联邦, Kirov, 610000

S. Dentovskaya

The Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology”

Email: info@obolensk.org
俄罗斯联邦, Obolensk, 142279

参考

  1. Galimand M., Courvalin P. Plague Treatment and Resistance to Antimicrobial agents. In: Yersinia: Systems Biology and Control. / Eds. E. Carniel and B.J. Hinnebusch. Norfolk: Caister Academic Press, 2012. P. 109–114. https://doi.org/10.1128/AAC.00306-06
  2. Kiefer D., Dalantai G., Damdindorj T., Riehm J.M., Tomaso H., Zöller L. et al. // Vector Borne Zoonotic Diseases. 2012. V. 12. № 3. P. 183–188. https://doi.org/10.1089/vbz.2011.0748
  3. Cabanel N., Bouchier C., Rajerison M., Carniel E. // Int. J. Antimicrob. Agents. 2018. V. 51. № 2. P. 249–254. https://doi.org/10.1016/j.ijantimicag.2017.09.015
  4. Guiyoule A., Gerbaud G., Buchrieser C., Galimand M., Rahalison L., Chanteau S. et al. // Emerg. Infect. Dis. 2001. V. 7. № 1. P. 43–48. https://doi.org/10.3201/eid0701.010106
  5. Welch T.J., Fricke W.F., McDermott P.F., White D.G., Rosso M.L., Rasko D.A. et al. // PLoS ONE. 2007. V. 2. № 3. e309. https://doi.org/10.1371/journal.pone.0000309
  6. Sebbane F., Lemaître N. // Biomolecules. 2021. V.11. № 5. 724. https://doi.org/10.3390/biom11050724
  7. Vagima Y., Gur D., Aftalion M., Moses S., Levy Y., Makovitzki A. et al. // Viruses. 2022. V. 14. № 4. 688. https://doi.org/10.3390/v14040688
  8. Xiao L., Qi Z., Song K., Lv R., Chen R., Zhao H. et al. // Front. Cell. Infect. Microbiol. 2023. V. 13. 1174510. https://doi.org/10.3389/fcimb.2023.1174510
  9. d’Hérelle F. // Presse Med. 1925. V. 33. P. 1393–1394.
  10. Moses S., Vagima Y., Tidhar A., Aftalion M., Mamroud E., Rotem S. et al. // Viruses. 2021. V. 13. № 1. https://doi.org/10.3390/v13010089
  11. Filippov A.A., Sergueev K.V., Nikolich M.P. // Bacteriophage. 2012. V. 2. № 3. P. 186–189. https://doi.org/10.4161/bact.22407
  12. Garcia E., Chain P., Elliott J.M., Bobrov A.G., Motin V.L., Kirillina O. et al. // Virology. 2008. V. 372. № 1. P. 85–96. https://doi.org/10.1016/j.virol.2007.10.032
  13. Born F., Braun P., Scholz H.C., Grass G. // Pathogens. 2020. V. 9. № 8. 611. https://doi.org/10.3390/pathogens9080611
  14. Filippov A.A., Sergueev K.V., He Y., Nikolich M.P. // Advances in Yersinia Research. New York: Springer, 2012. P. 123–134. https://doi.org/10.1007/978-1-4614-3561-7_16
  15. Datsenko K.A., Wanner B.L. // Proceedings of the National Academy of Sciences. 2000. V. 97. № 12. P. 6640–6645. https://doi.org/10.1073/pnas.120163297
  16. Makoveichuk E., Cherepanov P., Lundberg S., Forsberg A., Olivecrona G. // Journal of Lipid Research. 2003. V. 44. № 2. P. 320–330. https://doi.org/10.1194/jlr.M200182-JLR200
  17. Westphal O., Jann K. // Methods Carbohydr. Chem.1965. V. 5. P. 83–91.
  18. Konyshev I.V., Ivanov S.A., Kopylov P.H., Anisimov A.P., Dentovskaya S.V., Byvalov A.A. // Appl. Biochem. Microbiol. 2022. V. 58. № 4. P. 394–400. https://doi.org/10.1134/S0003683822040081
  19. Dudina L.G., Novikova O.D., Portnyagina O.Yu., Khomenko V.A., Konyshev I.V., Byvalov A.A. // Appl. Biochem. Microbiol. 2021. V. 57. № 4. Р. 426–433. https://doi.org/10.1134/S0003683821040049
  20. Filippov A.A., Sergueev K.V., He Y., Huang X.Z., Gnade B.T., Mueller A.J. et al. // PLoS One. 2011. V. 6. № 9. e25486. https://doi.org/10.1371/journal.pone.0025486
  21. Chauhan N., Wrobel A., Skurnik M., Leo J.C. // Proteomics Clin. Appl. 2016. V. 10. № 10. P. 949–963. https://doi.org/10.1002/prca.201600012
  22. Byvalov A.A., Dudina L.G., Ivanov S.A., Kopylov P.K., Svetoch T.E., Konyshev I.V. et al. // Bull. Exp. Biol. Med. 2022. V. 174. № 2. P. 241–245. https://doi.org/10.1007/s10517-023-05681-w
  23. Džupponová V., Žoldák G. // Biophysical Chemistry. 2021. V. 275. 106609. https://doi.org/10.1016/j.bpc.2021.106609
  24. Cerofolini L., Fragai M., Luchinat C., Ravera E. // Biophysical Chemistry. 2020. V. 265. 106441. https://doi.org/10.1016/j.bpc.2020.106441
  25. Anisimov A.P., Lindler L.E., Pier G.B. // Clinical Microbiology Reviews. 2004. V. 17. № 2. P. 434–464. https://doi.org/10.1128/cmr.17.2.434-464.2004
  26. Zav’yalov V.P., Abramov V.M., Cherepanov P.G., Spirina G.V., Chernovskaya T.V., Vasiliev A.M. et al. // FEMS Immunology & Medical Microbiology. 1996. V. 14. № 1. P. 53–57. https://doi.org/10.1111/j.1574-695X.1996.tb00267.x
  27. Galvan E.M., Chen H., Schifferli D.M. // Infection and Immunity. 2007. V. 75. № 3. P. 1272–1279. https://doi.org/10.1128/iai.01153-06
  28. Payne D., Tatham D., Williamson E.D., Titball R.W. // Infection and Immunity. 1998. V. 66. № 9. P. 4545–4548. https://doi.org/10.1128/iai.66.9.4545-4548.1998
  29. Zhao X., Cui Y., Yan Y., Du Z., Tan Y., Yang H. et al. // Journal of Virology. 2013. V. 87. № 22. P. 12260–12269. https://doi.org/10.1128/jvi.01948-13
  30. Xiao L, Qi Z, Song K, Lv R, Chen R, Zhao H. et al. // Front Cell Infect Microbiol. 2023. V. 13. 1174510. https://doi.org/10.3389/fcimb.2023.1174510
  31. Yang Y., Merriam J.J., Mueller J.P., Isberg R.R. // Infection and Immunity. 1996. V. 64. № . 7. P. 2483–2489. https://doi.org/10.1128/iai.64.7.2483-2489.1996
  32. Pakharukova N., Roy S., Tuittila M., Rahman M.M., Paavilainen S., Ingars A.K. et al. // Molecular Microbiology. 2016. V. 102. № 4. P. 593–610. https://doi.org/10.1111/mmi.13481
  33. Anisimov A.P. // Molekuliarnaia Genetika, Mikrobiologiia i Virusologiia. 2002. № 3. P. 3–23.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024