Invariant measures for contact processes with state-dependent birth and death rates
- Autores: Zhizhina E.A1, Pirogov S.A1
- 
							Afiliações: 
							- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
 
- Edição: Volume 59, Nº 2 (2023)
- Páginas: 63-82
- Seção: Articles
- URL: https://cardiosomatics.ru/0555-2923/article/view/667570
- DOI: https://doi.org/10.31857/S0555292323020055
- EDN: https://elibrary.ru/PQGTBP
- ID: 667570
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We consider contact processes on locally compact separable metric spaces with birth and death rates that are heterogeneous in space. We formulate conditions on the rates that ensure the existence of invariant measures of contact processes. One of the crucial conditions is the so-called critical regime condition. To prove the existence of invariant measures, we use the approach proposed in our preceding paper. We discuss in detail the multi-species contact model with a compact space of marks (species) in which both birth and death rates depend on the marks.
			                Sobre autores
E. Zhizhina
Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
														Email: ejj@iitp.ru
				                					                																			                												                								Moscow, Russia						
S. Pirogov
Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences
														Email: s.a.pirogov@bk.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Harris T.E. Contact Interactions on a Lattice // Ann. Probab. 1974. V. 2. № 6. P. 969-988. https://doi.org/10.1214/aop/1176996493
- Holley R., Liggett T.M. The Survival of Contact Processes // Ann. Probab. 1978. V. 6. № 2. P. 198-206. https://doi.org/10.1214/aop/1176995567
- Liggett T.M.Interacting Particle Systems. New York: Springer-Verlag, 1985.
- Kondratiev Yu., Kutoviy O., Pirogov S. Correlation Functions and Invariant Measures in Continuous Contact Model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2008. V. 11. № 2. P. 231-258. https://doi.org/10.1142/S0219025708003038
- Kondratiev Yu.G., Kutoviy O.V., Pirogov S.A., Zhizhina E. Invariant Measures for Spatial Contact Model in Small Dimensions // Markov Process. Related Fields. 2021. V. 27. № 3. P. 413-438. https://math-mprf.org/journal/articles/id1616
- Kondratiev Yu., Skorokhod A. On Contact Processes in Continuum // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2006. V. 9. № 2. P. 187-198. https://doi.org/10.1142/S0219025706002305
- Kondratiev Yu., Pirogov S., Zhizhina E. A Quasispecies Continuous Contact Model in a Critical Regime // J. Stat. Phys. 2016. V. 163. № 2. P. 357-373. https://doi.org/10.1007/s10955-016-1480-5
- Pirogov S., Zhizhina E., A Quasispecies Continuous Contact Model in a Subcritical Regime // Moscow Math. J. 2019. V. 19. № 1. P. 121-132. https://doi.org/10.17323/1609-4514-2019-19-1-121-132
- Nowak M. What Is a Quasispecies? // Trends Ecol. Evol. 1992. V. 7. № 4. P. 118-121. https://doi.org/10.1016/0169-5347(92)90145-2
- Pirogov S., Zhizhina E. Contact Processes on General Spaces. Models on Graphs and on Manifolds // Electron. J. Probab. 2022. V. 27. Article no. 41 (14 pp.). doi.org/10.1214/22-EJP765
- Ruelle D. Statistical Mechanics: Rigorous Results. New York: Benjamin, 1969.
- Lenard A. Correlation Functions and the Uniqueness of the State in Classical Statistical Mechanics // Commun. Math. Phys. 1973. V. 30. № 1. P. 35-44. https://doi.org/10.1007/BF01646686
- Lenard A. States of Classical Statistical Mechanical Systems of Infinitely Many Particles. II. Characterization of Correlation Measures // Arch. Rational Mech. Anal. 1975. V. 59. № 3. P. 241-256. https://doi.org/10.1007/BF00251602
- Petrov V.V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford: Clarendon; New York: Oxford Univ. Press, 1995.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
