Properties of Ultra-High Performance Fiber Reinforced Concrete with different types of steel fibers under axial tension
- 作者: Matiushin E.V.1, Soloviev V.G.1
-
隶属关系:
- National Research Moscow State University of Civil Engineering
- 期: 编号 1-2 (2025)
- 页面: 45-53
- 栏目: Статьи
- URL: https://cardiosomatics.ru/0585-430X/article/view/677194
- DOI: https://doi.org/10.31659/0585-430X-2025-832-1-2-45-53
- ID: 677194
如何引用文章
详细
Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) exhibits exceptional axial tensile strength and a plastic fracture behavior distinct from conventional fiber-reinforced concrete. This distinction arises from a strain-hardening phase, characterized by the formation of multiple, uniformly distributed microcracks and an increase in tensile stress beyond the cracking threshold. This study investigates the axial tensile performance of UHPFRC specimens reinforced with varying types and volumetric contents of fibers. Brass-coated corrugated steel fiber with length-to-diameter ratios of 15/0.3 mm and 22/0.3 mm, along with straight fiber with a ratio of 13/0.2 mm, were employed as dispersed reinforcements, with fiber content ranging from 1% to 3% by volume. The findings reveal that neither fiber type nor content significantly influences the cracking stress. However, the maximum tensile stress and fracture energy demonstrate a linear increase with the fiber factor, which integrates fiber volume fraction and geometric characteristics. For equivalent fiber factor values, both corrugated and straight fibers exhibit similar tensile stress, but corrugated fibers contribute to higher fracture energy. Based on the experimental results, an equation was derived to determine the minimum required fiber volume, given specific geometric properties, to achieve strain-hardening behavior under axial tension.
全文:

作者简介
E. Matiushin
National Research Moscow State University of Civil Engineering
编辑信件的主要联系方式.
Email: matyushinev@mgsu.ru
Lecturer, Postgraduate Student
俄罗斯联邦, 26, Yaroslavskoe Highway, Moscow, 129337V. Soloviev
National Research Moscow State University of Civil Engineering
Email: solovevvg@mgsu.ru
Candidate of Sciences (Engineering), Associate Professor
俄罗斯联邦, 26, Yaroslavskoe Highway, Moscow, 129337参考
- Wille K., El-Tawil S., Naaman A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites. 2014. Vol. 48, pp. 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
- Park J.J., Yoo D.Y., Park G.J., Kim S.W. Feasibility of reducing the fiber content in ultra- high-performance fiber-reinforced concrete under flexure. Materials. 2017. Vol. 10. https://doi.org/10.3390/ma10020118
- Wille K., Naaman A.E., Parra-Montesinos G.J. Ultra-High performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Materials Journal. 2011. Vol. 108. No. 1, pp. 46–54. EDN: OENBLV. https://doi.org/10.14359/51664215
- Wille K., Kim D.J., Naaman A.E. Strain-hardening UHP-FRC with low fiber contents. Materials and Structures. 2011. Vol. 44, pp. 583–598. EDN: OEMTJL. https://doi.org/10.1617/s11527-010-9650-4
- Yang J., Chen B., Wu X., Xu G. Quantitative analysis of steel fibers on UHPFRC uniaxial tensile behavior using X-CT and UTT. Construction and Building Materials. 2023. Vol. 368. EDN: LNFCOI. https://doi.org/10.1016/j.conbuildmat.2023.130349
- Hiew S.Y., Teoh K.B., Raman S.N., Hung C.C., Chaen Y.X., Kong D., Hafezolghorani M. A unified tensile constitutive model for mono/hybrid fibre-reinforced ultra-high-performance concrete (UHPC). Cement and Concrete Composites. 2024. Vol. 150. EDN: JBFVGM. https://doi.org/10.1016/j.cemconcomp.2024.105553
- Yoo D.Y., Kim S., Kim J.J., Chun B. An experimental study on pullout and tensile behavior of ultra-high- performance concrete reinforced with various steel fibers. Construction and Building Materials. 2019. Vol. 206, pp. 46–61. https://doi.org/10.1016/j.conbuildmat.2019.02.058
- Chun B., Yoo D.Y. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete. Composites Part B. 2019. Vol. 162, pp. 344–360. https://doi.org/10.1016/j.compositesb.2018.11.026
- Abellán-García A. Tensile behavior of recycled-glass-UHPC under direct tensile loading. Case Studies in Construction Materials. 2022. Vol. 17. EDN: ZWNJEX. https://doi.org/10.1016/j.cscm.2022.e01308
- Park S.H., Kim D.J., Ryu G.S., Koh K.T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites. 2012. Vol. 34. Iss. 2, pp. 172–184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
- Чилин И.А. Влияние технологических факторов на свойства сверхвысокопрочного сталефибробетона // Вестник НИЦ «Строительство». 2020. № 4. С. 135–157. EDN: KILLOU. https://doi.org/10.37538/2224-9494-2020-4(27)-135-147
- Chilin I.A. Influence of technological factors on the properties of ultra-high-strength steel fiber concrete. Vestnik of the Scientific Research Center «Construction». 2020. No. 4, pp. 135–157. (In Russian). EDN: KILLOU. https://doi.org/10.37538/2224-9494-2020-4(27)-135-147
- Matiushin E., Sizyakov I., Shvetsova V., Soloviev V. The properties and behavior of ultra-high-performance concrete: the effects of aggregate volume content and particle size. Buildings. 2024. Vol. 14. No. 9. EDN: JHROZS. https://doi.org/10.3390/buildings14092891
- Yoo D.Y., Park J.J., Kim S.W. Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber. Composite Structures. 2017. Vol. 174, pp. 263–276. https://doi.org/10.1016/j.compstruct.2017.04.064
- Dupont D., Vandewalle L. Distribution of steel fibres in rectangular sections. Cement and Concrete Composites. 2005. Vol. 27. No. 3, pp. 391–398. https://doi.org/10.1016/j.cemconcomp.2004.03.005
- Abrishambaf A., Pimentel M., Nunes S. A meso-mechanical model to simulate the tensile behaviour of ultra-high performance fibre-reinforced cementitious composites. Composite Structures. 2019. Vol. 222. https://doi.org/10.1016/j.cemconcomp.2004.03.005
- Shen X., Brühwiler E. Influence of local fiber distribution on tensile behavior of strain hardening UHPFRC using NDT and DIC. Cement and Concrete Research. 2020. Vol. 132. EDN: NXOVPP. https://doi.org/10.1016/j.cemconres.2020.106042
- Abrishambaf A., Pimentel M., Nunes S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites. Cement and Concrete Research. 2017. Vol. 97, pp. 28–40. https://doi.org/10.1016/j.cemconres.2017.03.007
- Duque L.F.M., Graybeal B. Fiber orientation distribution and tensile mechanical response in UHPFRC. Materials and Structures. 2017. Vol. 50. EDN: XEWNGW. https://doi.org/10.1617/s11527-016-0914-5
- Laranjeira F., Aguado A., Molins C., Grünewald S., Walraven J., Cavalaro S. Framework to predict the orientation of fibers in FRC: A novel philosophy. Cement and Concrete Research. 2012. Vol. 42, pp. 752–768. https://doi.org/10.1016/j.cemconres.2012.02.013
补充文件
