Study of the influence of defoamers on the main properties of plasticized cement paste

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of self-compacting concretes has become widespread in recent years. To achieve high flowability in mixtures, highly effective polycarboxylate based plasticizers are used. However, the use of superplasticizers in self-compacting concrete mixes without adding a defoamer can lead to a well-known problem: increased air entrainment and the formation of air bubbles. This can cause deterioration in the surface appearance. This article presents studies on the effects of various defoaming agents and air-entraining additives on the basic technological and rheological properties of plasticized by polycarboxylate plasticizers cement pastes, made from a blended binder which includes Portland cement and a microfiller based on ground blast-furnace granulated slag, in proportions of 25% and 40% respectively. The aim of this study was to investigate the spread diameter, expiration time, and dynamic viscosity of the cement paste with and without chemical additives, as well as to determine the type of defoaming agent that was most effective. The results of the experiments showed that a glycol ester-based defoamer was the most efficient. This type of agent reduced the number of surface pores in the paste. Optical microscopy was used to measure the size of these pores. It was found that glycol-ether defoamers were the most effective when used in concentrations of 0.02% and 0.04% in a cement mixture containing ground blast furnace slag (25%) and a polycarboxylate plasticizer. These additives changed the size and number of surface pores. It was also found that increasing the content of glycol-ether additives increased the mobility of the cement paste, but did not change the viscosity. There was a slight increase in average density and decrease in pore size and number by 0.28–0.29%, respectively. The study showed that using a defoaming agent in combination with a polycarboxylic acid ester-based additive can help reduce consumption and enhance plasticizing effects, thus predicting concrete behavior during construction.

Full Text

Restricted Access

About the authors

O. А. Larsen

National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: larsen.oksana@mail.ru

Candidate of Sciences (Engineering), Associate Professor

Russian Federation, 26, Yaroslavskoye Highway, Moscow, 129337

A. A. Solodov

National Research Moscow State University of Civil Engineering

Email: artem@solodof.ru

Graduate Student

Russian Federation, 26, Yaroslavskoye Highway, Moscow, 129337

A. M. Bahrah

National Research Moscow State University of Civil Engineering

Email: antonbahrah@mail.ru

Graduate Student

Russian Federation, 26, Yaroslavskoye Highway, Moscow, 129337

References

  1. Солодов А.А., Ларсен О.А. Архитектурные фасадные бетоны для монолитного строительства. Традиции, современные проблемы и перспективы развития строительства: Сборник научных статей. Редколлегия: А.Р. Волик (гл. ред.). Гродно, 2022. С. 190–193. EDN: KZZHAL. Solodov A.A., Larsen O.A. Architectural facade concretes for monolithic construction. Traditions, modern problems and prospects for the development of construction. Collection of scientific articles. Editorial board: A.R. Volik (editor-in-chief). Grodno. 2022, pp. 190–193. (In Russian). EDN: KZZHAL
  2. Земскова О.В., Дударева М.О. Современные технологии декорирования бетона в городском ландшафте // Техника и технология силикатов. 2022. Т. 29. № 1. С. 75–81. EDN: YUDREX. Zemskova O.V., Dudareva M.O. Modern technologies for decorating concrete in the urban landscape Tekhnika i Tekhnologiya Silikatov. 2022. Vol. 29. No. 1, pp. 75–81. EDN: YUDREX
  3. Горнов А.А. Индустриальное домостроение на основе легкого бетона // Жилищное строительство. 2021. № 5. С. 35–40. EDN: XVUNCZ. https://doi.org/10.31659/0044-4472-2021-5-35-40. Gornov A.A. Industrial housing construction on the basis of light concrete. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 35–40. (In Russian). EDN: XVUNCZ. https://doi.org/10.31659/0044-4472-2021-5-35-40
  4. Erofeev V.T., Vatin N.I., Maksimova I.N., Tarakanov O.V., Sanyagina Ya.A., Erofeeva I.V., Suzdaltsev O.V. Powder-activated concrete with a granular surface texture. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18. No. 4, pp. 49–61. EDN: HODYXP. https://doi.org/10.22337/2587-9618-2022-18-4-49-61
  5. Рубин О.Д., Ильин Ю.А., Шевкин А.Л., Евдокимова И.В. Создание литых бетонных смесей с применением добавок отечественного производства // Гидротехническое строительство. 2024. № 1. С. 12–17. EDN: ROKOWU. Rubin O.D., Ilyin Yu.A., Shevkin A.L., Evdokimova I.V. Creation of cast concrete mixtures using domestically produced additives. Gidrotekhnicheskoye Stroitel’stvo. 2024. No. 1, pp. 2–17. (In Russian). EDN: ROKOWU
  6. Касторных Л.И., Каклюгин А.В., Гикало М.А., Трищенко И.В. Особенности состава бетонных смесей для бетононасосной технологии // Строительные материалы. 2020. № 3. С. 4–11. EDN: TUGYDO. https://doi.org/10.31659/0585-430X-2020-779-3-4-11. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). EDN: TUGYDO. https://doi.org/10.31659/0585-430X-2020-779-3-4-11
  7. Hedda Vikan. State of the art – Quality of concrete surfaces. Report. SINTEF Community. 2007. SBF BK A07013.
  8. Жукова Г.Г., Сайфулина А.И. Исследование применения самовосстанавливающегося бетона // Construction and Geotechnics. 2020. Т. 11. № 4. С. 58–68. EDN: ICKKEC. https://doi.org/10.15593/2224-9826/2020.4.05 Zhukova G.G., Saifulina A.I. Study of the application of self-healing concrete. Construction and Geotechnics. 2020. Vol. 11. No. 4, pp. 58–68. (In Russian). EDN: ICKKEC. https://doi.org/10.15593/2224-9826/2020.4.05
  9. Нелюбова В.В., Усиков С.А., Строкова В.В., Нецвет Д.Д. Состав и свойства самоуплотняющегося бетона с использованием комплекса модификаторов // Строительные материалы. 2021. № 12. С. 48–54. EDN: MWNAJK. https://doi.org/10.31659/0585-430X-2021-798-12-48-54 Nelubova V.V., Usikov S.A., Strokova V.V., Netsvet D.D. Composition and properties of self-compacting concrete using a complex of modifiers. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 48–54. (In Russian). EDN: MWNAJK. https://doi.org/10.31659/0585-430X-2021-798-12-48-54
  10. Powers T.C. The air requirement of frost-resistant concrete. Proceedings, Highway. Research Board. 1949. No. 29, pp. 184–202. https://onlinepubs.trb.org/Onlinepubs/hrbproceedings/29/29-010.pdf
  11. Lei L., Zhang L. Synthesis and performance of a non-air entraining polycarboxylate superplasticizer. Cement and Concrete Research. 2022. Vol. 159. 106853. EDN: FQYUQY. https://doi.org/10.1016/j.cemconres.2022.106853
  12. Lange J. Plank. Study on the foaming behaviour of allyl ether-based polycarboxylate superplasticizers. Cement and Concrete Research. 2012. No. 42, pp. 484–489. EDN: XZBDZL. https://doi.org/10.1016/j.cemconres.2011.11.017
  13. Final report of RILEM TC 188-CSC “Casting of self-compacting concrete”. RILEM Technical Committee. Materials and Structures. 2006. Vol. 39, pp. 937–954. EDN: HXBHZR. https://doi.org/10.1617/s11527-006-9186-9
  14. Brooks J.J., Johari M.A.M., Mazloom M. Effect of admixtures on the setting times of high-strength concrete. Cement and Concrete Composites. 2000. No. 22, pp. 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1
  15. William L. Dolch. Air-Entraining Admixtures. In book: Concrete Admixtures Handbook (Second Edition). Properties, Science, and Technology.1996, pp. 518–557. https://doi.org/10.1016/B978-081551373-5.50012-X
  16. Metla M. N. A., Amin M. N., Rizwan S. A., Khan K. Self-consolidating paste systems using ground granulated blast furnace slag and limestone powder mineral admixtures. Case Studies in Construction Materials. 2024. No. 20. 03316. EDN: FFAYNC. https://doi.org/10.1016/j.cscm.2024.e03316
  17. Luan C., Yang Q., Lin X., Gao X., Cheng H., Huang Y., Du P., Zhou Z., Wang J. The synergistic effects of ultrafine slag powder and limestone on the rheology behavior, microstructure, and fractal features of ultra-high performance concrete (UHPC). Materials. 2023. No. 16. 2281. EDN: BMEHOU. https://doi.org/10.3390/ma16062281
  18. Ларсен О.А., Солодов А.А., Наруть В.В., Бутенко К.А., Веселов В.К. Исследование свойств тонкодисперсных материалов для получения самоуплотняющегося бетона // Техника и технология силикатов. 2022. Т. 29. № 4. С. 359–368. EDN: HMVYMV. Larsen O.A., Solodov A.A., Narut V.V., Butenko K.A., Veselov V.K. Study of the properties of finely dispersed materials for obtaining self-compacting concrete. Tekhnika i Tekhnologiya Silikatov. 2022. Vol. 29. No. 4, pp. 359–368. (In Russian). EDN: HMVYMV
  19. Ларсен О.А., Самченко С.В., Стенечкина К.С., Алпацкий Д.Г. Влияние тонкодисперсных материалов на самоуплотняемость бетонной смеси // Техника и технология силикатов. 2023. Т. 30. № 3. С. 217–229. EDN: NFDRFF. Larsen O.A., Samchenko S.V., Stenechkina K.S., Alpatsky D.G. Influence of finely dispersed materials on self-compactability of concrete mix. Tekhnika i Tekhnologiya Silikatov. 2023. Vol. 30. No. 3, pp. 217–229. (In Russian). EDN: NFDRFF
  20. Ларсен А.О., Бахрах А.М., Машина Т.Ю. Органоминеральный модификатор на основе шламовой воды для получения высокопрочных самоуплотняющихся бетонов // Техника и технология силикатов. 2024. Т. 31. № 4. С. 365–376. EDN: MJUPXW https://doi.org/10.62980/2076-0655-2024-365-376. Larsen A.O., Bakhrakh A.M., Mashina T.Yu. Organomineral modifier based on slurry water for obtaining high-strength self-compacting concrete. Tekhnika i Tekhnologiya Silikatov. 2024. Vol. 31. No. 4, pp. 365–376. (In Russian). EDN: MJUPXW. https://doi.org/10.62980/2076-0655-2024-365-376
  21. Larsen O.A., Samchenko S.V., Zemskova O.V., Korshunov A.V., Solodov A.A. Self-compacting mixtures of fair-faced concrete based on ggbfs and a multicomponent chemical admixture-technological and rheological properties. Buildings. 2024. Vol. 14 (11). 3545. EDN: OTNUBQ. https://doi.org/10.3390/buildings14113545
  22. Солодов А.А., Ларсен О.А. Влияние тонкодисперсного наполнителя на усадку смешанного вяжущего. Строительное материаловедение: настоящее и будущее: Сборник материалов III Всероссийской научной конференции, посвященной девяностолетию кафедры Строительного материаловедения. М., 2023. С. 288–292. EDN: FTTBIP. Solodov A.A., Larsen O.A. Effect of fine filler on the shrinkage of mixed binder. Construction Materials Science: Present and Future: Collection of materials of the III All-Russian scientific conference dedicated to the ninetieth anniversary of the Department of Construction Materials Science. Moscow. 2023, pp. 288–292. (In Russian). EDN: FTTBIP

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Granulometric composition of cement (1) and ground blast furnace slag (2)

Download (125KB)
3. Fig. 2. Determination of the diameter of the spread of cement paste in the presence of chemical additives

Download (38KB)
4. Fig. 3. Evaluation of the mobility and viscosity of cement paste with determination of the flow diameter (a) and flow time (b)

Download (103KB)
5. Fig. 4. Change in spread diameter depending on the type of defoamer

Download (54KB)
6. Fig. 5. Change in dynamic viscosity ■, Pa·s, and average density of cement paste ■, kg/m3, depending on the type of defoamer

Download (51KB)
7. Fig. 6. Change in surface porosity of cement stone depending on the type of defoamer

Download (51KB)
8. Fig. 7. Surface porosity of cement stone in the presence of defoamers of different origins: а – control composition; b – defoamer type A; c – defoamer type B; d – defoamer type C; e – defoamer type D

Download (657KB)
9. Рис. 8. Изменение диаметра расплыва ■ и времени истечения ■ в присутствии пеногасителей типа B и D

Download (53KB)
10. Fig. 9. Change in the average density of cement paste in the presence of antifoaming agents of types B and D

Download (74KB)
11. Fig. 10. Change in surface porosity in the presence of antifoams of types B and D

Download (63KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"