Влияние ротационной ковки на структуру, механические и коррозионные свойства сплава Mg-1,1%Zn-1,7%Dy

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние ротационной ковки (РК) со степенью деформации e = 1,28 и 2,31 на микроструктуру, коррозионную стойкость и механические свойства потенциального медицинского сплава Mg-1,1%Zn-1,7%Dy. Показано, что РК при e = 1,28 приводит к измельчению зерна исследуемого сплава практически в 10 раз (с 300-400 до 30-40 мкм). Повышение степени деформации до e = 2,31 приводит к формированию неоднородной микроструктуры с областями, содержащими зерна как размером 30-40 мкм, так и 5-10 мкм. Измельчение зерна после РК приводит к повышению стойкости к электрохимической коррозии (потенциал коррозии увеличивается от -1550±9 мВ в закаленном состоянии до -1442±23 и -1454±35 мВ после РК соответственно при e = 1,28 и 2,31), но не вызывает изменения плотности тока коррозии. При этом скорость деградации сплава растет с увеличением степени деформации вплоть до 3,46±1,06 мм/год. Измельчение структуры после РК при e = 1,28 приводит к существенному росту прочности исследуемого сплава относительно закаленного состоянии (предел прочности растет с 70±13 до 273±7 МПа) при снижении пластичности с 23,1±5,1 до 14,0±2,9%. Повышение степени деформации до e = 2,31 не приводит к росту прочности сплава (sв = 267±4 МПа), но вызывает увеличение пластичности (d = 21,1±1,6%), по-видимому, в результате текстурных изменений, происходящих в сплаве.

Об авторах

Н. С Мартыненко

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

Д. Р Темралиева

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

Е. А Лукьянова

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

О. В Рыбальченко

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: orybalchenko@imet.ac.ru

Г. В Рыбальченко

Физический институт им. П.Н. Лебедева РАН

Email: nmartynenko@imet.ac.ru

А. И Огарков

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

И. Е Тарытина

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

В. С Юсупов

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН

Email: nmartynenko@imet.ac.ru

С. В Добаткин

ФГБУН Институт металлургии и материаловедения им. А.А. Байкова РАН; Национальный исследовательский технологический университет «МИСиС»

Автор, ответственный за переписку.
Email: nmartynenko@imet.ac.ru

Список литературы

  1. Zan, R. Research hotspots and trends of biodegradable magnesium and its alloys / R. Zan,S. Shen, Y. Huang, H. Yu, Y. Liu, S. Yang, В. Zheng, Z. Gong, W. Wang, X. Zhang, T. Suo, H. Liu // Smart Mater. Medicine. 2023. J. Pre-proof. https://doi.org/10.1016/j.smaim.2023.01.002
  2. Zerankeshi, M.М. Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys / M.М. Zerankeshi, R. Alizadeh, E. Gerashi, M. Asadollahi, T.G. Langdon //j. Magnesium and Alloys. 2022. V.10. Is.7. P.1737-1785. https://doi.org/10.1016/j.jma.2022.04.010
  3. Yusop, A.H.M. Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges / A.H.M. Yusop, M.N. Sarian, F.S. Januddi, H. Nur // Biocybernetics and Biomedical Eng. 2023. V.43. Is.1. P.42-57. https://doi.org/10.1016/j.bbe.2022.11.002
  4. Grimm, M. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys / M. Grimm, A.Lohmьller, R.F. Singer, S. Virtanen // Corros. Sci. 2019. V.155. P.195-208. https://doi.org/10.1016/j.corsci.2019.04.024
  5. Romzi, M.A.F. Effect of zinc (Zn) on the microstructure and corrosion behaviour of magnesium (Mg) / M.A.F. Romzi, J. Alias, M.I.M. Ramli // Mater. Today: Proceed. 2022. V.48. Is.6. P.1873-1879. https://doi.org/10.1016/j.matpr.2021.09.261
  6. Metalnikov, P. The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys / P. Metalnikov, G. Ben-Hamu, Y. Templeman, K.S. Shin, L. Meshi // Mater. Characterization. 2018. V.145. P.101-115. https://doi.org/10.1016/j.matchar.2018.08.033
  7. Yang, L. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications / L. Yang, Y. Huang, Q. Peng, F. Feyerabend, K.U. Kainer, R. Willumeit, N. Hort // Mater. Sci. Eng.: B. 2011. V.176. Is.20. P.1827-1834. https://doi.org/10.1016/j.mseb.2011.02.025
  8. Liu, X. Influence of yttrium element on the corrosion behaviors of Mg-Y binary magnesium alloy / X. Liu, D. Shan, Y. Song, E.-h. Han //j. Magnesium Alloys. 2017. V.5. Is.1. P.26-34. https://doi.org/10.1016/j.jma.2016.12.002
  9. Zhao, X. A Comparison of corrosion behavior in saline environment: rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys / X. Zhao, L.-l. Shi, J. Xu //j. Mater. Sci. Technol. 2013. V.29. Is.9. P.781-787. https://doi.org/10.1016/j.jmst.2013.05.017
  10. Feyerabend, F. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines / F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drьcker, C. Vogt, N. Hort // Acta Biomaterialia. 2010. V.6. Is.5. P.1834-1842. https://doi.org/10.1016/j.actbio.2009.09.024
  11. Walker, J. Magnesium biomaterials for orthopedic application: A review from a biological perspective /j. Walker, S. Shadanbaz, T.B. Woodfield, M.P. Staiger, G.J. Dias //j. Biomedical Mater. Res. Pt. B: Applied Biomaterials. 2014. V.102. P.1316-1331. https://doi.org/10.1002/jbm.b.33113
  12. Flaten, T. Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer's disease), Parkinson's disease and amyotrophic lateral sclerosis in Norway / T. Flaten // Envrion Geochem Health. 1990. V.12. P.152- 167. https://doi.org/10.1007/BF01734064
  13. Wills, M. Aluminium poisoning: Dialysis, encephalopathy, osteomalacia and anaemia / M. Wills, J. Savory // Lancet. 1983. V.2. P.29-34. https://doi.org/10.1016/S0140-6736(83)90014-4
  14. Flaten, T. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water / T. Flaten // Brain Res. Bull. 2001. V.55. P.187-196. https: //doi.org/10.1016/S0361-9230(01)00459-2
  15. Yang, H. Alloying design of biodegradable zinc as promising bone implants for load- bearing applications / H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y.Zheng // Nature Communications. 2020. V.11. Is.1. P.401. https://doi.org/10.1038/s41467-019-14153-7
  16. Mousavizadeh, S.M. Effect of Mn addition on corrosion and biocompatibility characteristics of a new biodegradable Mg-1Ca-2Zn-1RE alloy / S.M. Mousavizadeh, S.H. Tabaian // Metals Mater.Intern. 2021. V.27. P.5074-5081. https://doi.org/10.1007/s12540-020-00885-5
  17. Li, Z. The development of binary Mg-Ca alloys for use as biodegradable materials within bone / Z. Li, X. Gu, S. Lou, Y. Zheng // Biomaterials. 2008. V.29. Is.10. P.1329-1344. https://doi.org/10.1016/j.biomaterials.2007.12.021
  18. Straumal, B. The effect of equal-channel angular pressing on microstructure, mechanical properties, and biodegradation behavior of magnesium alloyed with silver and gadolinium / B. Straumal, N. Martynenko, Д. Temralieva, V. Serebryany, N. Tabachkova, I. Shchetinin, N. Anisimova, M. Kiselevskiy, A. Kolyanova, G. Raab, R. Willumeit-Romer, S. Dobatkin, Y. Estrin // Crystals. 2020. V.10. Is.10. Art.918. https://doi.org/10.3390/cryst10100918
  19. Martynenko, N. Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments / N. Martynenko, E. Lukyanova, N. Anisimova, M. Kiselevskiy, V. Serebryany, N. Yurchenko, G. Raab, N. Birbilis, G. Salishchev, S. Dobatkin, Y. Estrin // Materialia. 2020. V.13. Art.100841. https: //doi.org/10.1016/j.mtla.2020.100841
  20. Gao, M. Enhancing mechanical property and corrosion resistance of Mg-Zn-Nd alloy wire by a combination of SPD techniques, extrusion and hot drawing / M. Gao, I.P. Etim, K. Yang, L. Tan, Z. Ma // Mater. Sci. Eng. A. 2022. V.829. Art.142058. https://doi.org/10.1016/j.msea.2021.142058
  21. Horky, J. Improving mechanical properties of lean Mg-Zn-Ca alloy for absorbable implants via double equal channel angular pressing (D-ECAP) /j. Horky, K. Bryla, M. Krystian, G. Mozdzen, B. Mingler, L. Sajti // Mater. Sci. Eng. A. 2021. V.826. Art.142002. https://doi.org/10.1016/j.msea.2021.142002
  22. Martynenko, N. Structure, mechanical characteristics, biodegradation, and in vitro cytotoxicity of magnesium alloy ZX11 processed by rotary swaging / N. Martynenko, N. Anisimova, M. Kiselevskiy, N. Tabachkova, D. Temralieva, D. Prosvirnin, V. Terentiev, A. Koltygin, V. Belov, M. Morosov, V. Yusupov, S. Dobatkin, Y. Estrin //j. Magnesium and Alloys. 2020. V.8. Is.4. P.1038-1046. https://doi.org/10.1016/j.jma.2020.08.008
  23. Fu, Q. Investigating the combined effects of wide stacking faults and grain size on the mechanical properties and corrosion resistance of high-purity Mg / Q. Fu, C. Wang, C. Wu, Y. Wu, X. Dai, W. Jin, B. Guo, M. Song, W. Li, Z. Yu //j. Alloys and Compounds. 2022. V.927. Art.167018. https://doi.org/10.1016/j.jallcom.2022.167018
  24. Alkhazraji, H. Enhanced fatigue strength of commercially pure Ti processed by rotary swaging / H. ALkhazraji, E. El-Danaf, M. Wollmann, Lothar Wagner // Advanc. Mater. Sci. Eng. 2015. V.2015. Art.301837. http://dx.doi.org/10.1155/2015/301837
  25. Trojanova, Z. Fatigue in an AZ31 alloy subjected to rotary swaging / Z. Trojanova, Z. Drozd, K. HalmesÚova¢, J. DzÚugan, T. Hofrichterova¢, P. PalcÚÚek, P. Mina¢rik, T. SÚkraban, F. Novy // Materials. 2022. V.15(21). P.7541. https://doi.org/10.3390/ma15217541
  26. Kostova, I. New samarium(iii), gadolinium(iii), and dysprosium(iii) complexes of coumarin-3-carboxylic acid as antiproliferative agents / I. Kostova, G. Momekov, P. Stancheva // Metal-Based Drugs. 2007. V.2007. P.15925. doi: 10.1155/2007/15925.
  27. ASTM G31-21; Standard Guide for Laboratory Immersion Corrosion Testing of Metals; ASTM International: West Conshohocken, PA, USA, 2004.
  28. Rokkala, U. Tailoring surface characteristics of bioabsorbable Mg-Zn-Dy alloy using friction stir processing for improved wettability and degradation behavior / U. Rokkala, S. Bontha, M.R. Ramesh, V.K. Balla, A. Srinivasan, S. V. Kailas //j. Mater. Res. Technol. 2021. V.12. P.1530-1542. https://doi.org/10.1016/j.jmrt.2021.03.057
  29. Лякишев, Н.П. Диаграммы состояния двойных металлических систем: справочник: в 3 т. Т.2 / Н.П. Лякишев. - М.: Машиностроение, 1997. 1023 с.
  30. Martynenko, N. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy / N. Martynenko, E. Lukyanova, V. Serebryany, D. Prosvirnin, V. Terentiev, G. Raab, S. Dobatkin, Y. Estrin // Mater. Letters. 2019. V.238. P.218-221. https://doi.org/10.1016/j.matlet.2018.12.024
  31. Estrin, Y. The effect of equal-channel angular pressing on the microstructure, the mechanical and corrosion properties and the anti-tumor activity of magnesium alloyed with silver / Y. Estrin, N. Martynenko, N. Anisimova, D. Temralieva, M. Kiselevskiy, V. Serebryany, G. Raab, B. Straumal, B. Wiese, R. Willumeit-Rцmer, S. Dobatkin // Materials. 2019. V.12. Is.23. Art.3832. https: //doi.org/10.3390/ma12233832
  32. Agnew, S.R. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing / S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown // Scripta Materialia. 2004. V.50. Is.3. P.377-381. https: //doi.org/10.1016/j.scriptamat. 2003.10.006
  33. Akbaripanah, F. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing / F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H. Kim // Mater. Design. 2013. V.43. P.31-39. https://doi.org/10.1016/j.matdes.2012. 06.051
  34. Somekawa, H. High strength and fracture toughness balances in extruded Mg-Zn-Re alloys by dispersion of quasicrystalline phase particles / H. Somekawa, A. Singh, Y. Osawa, T. Mukai // Mater. Trans. 2008. V.49. Is.9. P.1947-1952. https://doi.org/10.2320/matertrans.MAW200804
  35. Xu, W.C. Precipitates formed in the as-forged Mg-Zn-RE alloy during ageing process at 250 °C / W.C. Xu, X.Z. Han, D.B. Shan // Mater. Characterization. 2013. V.75. P.176-183. https://doi.org/10.1016/j.matchar.2012.09.009
  36. Tong, L.B. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys / L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng, H.J. Zhang //j. Mechan. Behavior of Biomedical Mater. 2016. V.62. P.57-70. https://doi.org/10.1016/j.jmbbm.2016.04.038
  37. Zhang, Z. Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn- Zr alloys with specific Y/Zn mole ratios / Z. Zhang, X. Liu, W. Hu, J. Li, Q. Le, L. Bao, Z. Zhu, J. Cui //j. Alloys and Compounds. 2015. V.624. P.116-125. https://doi.org/10.1016/j.jallcom.2014.10.177
  38. Bi, G. Microstructure and mechanical properties of an extruded Mg-2Dy-0,5Zn alloy / G. Bi, D. Fang, W. Zhang, J. Sudagar, Q. Zhang, J. Lian, Z. Jiang //j. Mater. Sci. Technol. 2012. V.28. Is.6. P.543-551. https://doi.org/10.1016/S1005-0302(12)60095-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023