Molecular-genetic markers of neuroglia in traumatic brain injury and their use for assessing functional status of sportsmen
- Authors: Cherepanova А.V.1, Bravy Y.R.1, Karabelsky A.V.1, Kotova М.M.1, Sherbakova A.S.2, Apukhtin К.V.1, Nikitin V.S.1, Bobrov М.Y.1, Kalueff A.V.1,3
-
Affiliations:
- Sirius University of Science and Technology
- Kuban State Agrarian University named after I. T. Trubilin
- St. Petersburg State University
- Issue: Vol 110, No 7 (2024)
- Pages: 1057–1074
- Section: REVIEW
- URL: https://cardiosomatics.ru/0869-8139/article/view/651612
- DOI: https://doi.org/10.31857/S0869813924070015
- EDN: https://elibrary.ru/BEDMRQ
- ID: 651612
Cite item
Abstract
Neuroglia performs multiple important functions including maintaining brain homeostasis, metabolism, neuroprotection and modulating neurotransmission. Studying the role of neuroglia is necessary to understand the development of pathological neurodegenerative processes, as well as the restoration of nervous tissue during inflammation or injury. However, the analysis of neuroglial processes is complicated by its high heterogeneity and the lack of a system of biomarkers that make it possible to unambiguously assess the functional state of the nervous system. Here, we analyze data on clinically significant molecular genetic markers of different types of neuroglia, and the prospects for their use in sport physiology, including the assessment of athletes following traumatic brain injuries of varying severity and other types of sport-related traumas.
Full Text

About the authors
А. V. Cherepanova
Sirius University of Science and Technology
Author for correspondence.
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
Y. R. Bravy
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
A. V. Karabelsky
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
М. M. Kotova
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
A. S. Sherbakova
Kuban State Agrarian University named after I. T. Trubilin
Email: anesthesia.cher@gmail.com
Russian Federation, Krasnodar
К. V. Apukhtin
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
V. S. Nikitin
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
М. Yu. Bobrov
Sirius University of Science and Technology
Email: anesthesia.cher@gmail.com
Russian Federation, Sirius Federal Territory
A. V. Kalueff
Sirius University of Science and Technology; St. Petersburg State University
Email: anesthesia.cher@gmail.com
Institute of Translational Biomedicine
Russian Federation, Sirius Federal Territory; St. PetersburgReferences
- Allen NJ, Lyons DA (2018) Glia as architects of central nervous system formation and function. Science (1979) 362: 181–185. https://doi.org/10.1126/science.aat0473
- Kettenmann H, Verkhratsky A (2011) Neuroglia, der lebende Nervenkitt. Fortschritte der Neurol Psychiatr 79: 588–597. https://doi.org/10.1055/s-0031–1281704
- Rodríguez JJ, Verkhratsky A (2011) Neuroglial roots of neurodegenerative diseases? Mol. Neurobiol. 43: 87–96. https://doi.org/10.1007/s12035–010–8157-x
- Zhou B, Zuo YX, Jiang RT (2019) Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 25: 665–673. https://doi.org/10.1111/cns.13123
- García-Cáceres C, Balland E, Prevot V, Luquet S, Woods SC, Koch M, Horvath TL, Yi CX, Chowen JA, Verkhratsky A, Araque A, Bechmann I, Tschöp MH (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22: 7–14. https://doi.org/10.1038/s41593–018–0286-y
- Westergard T, Rothstein JD (2020) Astrocyte Diversity: Current Insights and Future Directions. Neurochem Res 45: 1298–1305. https://doi.org/10.1007/s11064–020–02959–7
- Fan YY, Huo J (2021) A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 148: 1–11. https://doi.org/10.1016/j.neuint.2021.105080
- Brenner M, Messing A (2021) Regulation of GFAP Expression. ASN Neuro 13: 1–32. https://doi.org/10.1177/1759091420981206
- Hubbard WB, Greenberg S, Norris C, Eck J, Lavik E, Vandevord P (2017) Distinguishing the Unique Neuropathological Profile of Blast Polytrauma. Oxid Med Cell Longev 2017: 1–11. https://doi.org/10.1155/2017/5175249
- Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V (2023) The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 24: 1–15. https://doi.org/10.3390%2Fijms24119605
- Stokum JA, Gerzanich V, Simard JM (2016) Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 36: 513–538. https://doi.org/10.1177/0271678X15617172
- Olczak M, Niderla-Bielińska J, Kwiatkowska M, Samojłowicz D, Tarka S, Wierzba-Bobrowicz T (2017) Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int 280: 1–7. https://doi.org/10.1016/j.forsciint.2017.09.008
- Hostenbach S, D’haeseleer M, Kooijman R, De Keyser J (2016) The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 144: 88–102. https://doi.org/10.1016/j.pneurobio.2016.04.009
- Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59: 200–207. https://doi.org/10.1002/glia.21089
- Kinoshita M, Okuno T (2023) Autoimmune-mediated astrocytopathy. Inflamm Regen 43: 1–39. https://doi.org/10.1186/s41232–023–00291–5
- Lee HG, Wheeler MA, Quintana FJ (2022) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21: 339–358. https://doi.org/10.1038/s41573–022–00390-x
- Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR (2023) Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 11: 1–28. https://doi.org/10.1186/s40478–023–01526–9
- Kuhn S, Gritti L, Crooks D, Dombrowski Y (2019) Oligodendrocytes in development, myelin generation and beyond. Cells 8: 1–23. https://doi.org/10.3390/cells8111424
- Zhou B, Zhu Z, Ransom BR, Tong X (2021) Oligodendrocyte lineage cells and depression. Mol Psychiatry 26: 103–117. https://doi.org/10.1038/s41380–020–00930–0
- Elbaz B, Popko B (2019) Molecular Control of Oligodendrocyte Development. Trends Neurosci 42: 263–277. https://doi.org/10.1016/j.tins.2019.01.002
- Philips T, Rothstein JD (2017) Oligodendroglia: Metabolic supporters of neurons. J Clin Invest 127: 3271–3280. https://doi.org/10.1172/JCI90610
- Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, Lee A, Chung RS, Graeber MB, Morsch M (2022) Microglia morphophysiological diversity and its implications for the CNS. Front Immunol 13: 3270–3280. https://doi.org/10.3389/fimmu.2022.997786
- Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21: 1359–1369. https://doi.org/10.1038/s41593–018–0242-x
- Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17: 400–406. https://doi.org/10.1038/nn.3641
- Ling H, Hardy J, Zetterberg H (2015) Neurological consequences of traumatic brain injuries in sports. Mol Cell Neurosci 66: 114–122. https://doi.org/10.1016/j.mcn.2015.03.012
- Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9: 1–12. https://doi.org/10.1186/s40035–020–00221–2
- Zhou T, Liu Y, Yang Z, Ni B, Zhu X, Huang Z, Xu H, Feng Q, Lin X, He C, Liu X (2021) IL-17 signaling induces iNOS+ microglia activation in retinal vascular diseases. Glia 69: 2644–2657. https://doi.org/10.1002/glia.24063
- Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS (2022) Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 27: 3194–3219. https://doi.org/10.3390/molecules27103194
- Loane DJ, Byrnes KR (2010) Role of Microglia in Neurotrauma. Neurotherapeutics 7: 366–377. https://doi.org/10.1016/B978–0–444–63954–7.00028–8
- Mckee AC, Abdolmohammadi B, Stein TD (2018) The neuropathology of chronic traumatic encephalopathy. In: Handbook of Clinical Neurology. Elsevier B. V. 297–307. https://doi.org/10.1016/b978–0–444–63954–7.00028–8
- Ильин НП, Галстян ДС, Демин КА, Калуев АВ (2023) Поведенческие, геномные и нейрохимические нарушения в модели нейротравмы на взрослых рыбах зебраданио (Danio rerio). Рос физиол журн 109: 1699–1717. [Ilyin NP, Galstyan DS, Demin KA, Kalueff AV (2023)Behavioral, Genomic and neurochemical deficits in the model of neurotrauma in adilt zerbafish (Danio rerio). Russ J Physiol 109: 1699–1717. (In Russ)]. https://doi.org/10.31857/S0869813923110043
- Лихтерман ЛБ, Потапов АА, Клевно ВА, Кравчук АД, Охлопков ВА (2016) Последствия черепно-мозговой травмы. Cудебная медицина 2:4–20. [Likhterman LB, Potapov AA, Klevno VA, Kravchuk AD, Okhlopkov VA (2016) Consequences of traumatic brain injury. Russ J Forens Med 2: 4–20. (In Russ)]. https://doi.org/10.19048/2411–8729–2016–2–4–4–20
- Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246: 35–43. https://doi.org/10.1016/j.expneurol.2012.01.013
- Pan J, Connolly ID, Dangelmajer S, Kintzing J, Ho AL, Grant G (2016) Sports-related brain injuries: Connecting pathology to diagnosis. Neurosurg Focus 40: 1–16. https://doi.org/10.3171/2016.1.FOCUS15607
- Cherry JD, Tripodis Y, Alvarez VE, Huber B, Kiernan PT, Daneshvar DH, Mez J, Montenigro PH, Solomon TM, Alosco ML, Stern RA, McKee AC, Stein TD (2016) Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol Commun 4: 112. https://doi.org/10.1186/s40478–016–0382–8
- Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, Evans J, Mullan M, Bachmeier C, Stewart W, Crawford F (2016) Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau oligomers. J Neuropathol Exp Neurol 75: 636–655. https://doi.org/10.1093/jnen/nlw035
- VanItallie TB (2019) Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism 100: 1–6. https://doi.org/10.1016/j.metabol.2019.07.007
- Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA (2016) Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology 110: 654–659. https://doi.org/10.1016/j.neuropharm.2015.04.029
- Bernaciková MM Degenerative Brain Changes in Athletes Department of Kinesiology Degree programme: Phys Educat and Sport 1–84.
- Michinaga S, Koyama Y (2021) Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int J Mol Sci 22: 1–17. https://doi.org/10.3390/ijms22126418
- Senaratne N, Hunt A, Sotsman E, Grey MJ (2022) Biomarkers to aid the return to play decision following sports-related concussion: a systematic review. J Concussion 6: 205970022110707. https://doi.org/10.1177/20597002211070735
- Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL (2014) Linking traumatic brain injury to chronic traumatic encephalopathy: Identification of potential mechanisms leading to neurofibrillary tangle development. J. Neurotrauma 31: 1129–1138. https://doi.org/10.1089/neu.2013.3303
- Cherry JD, Babcock KJ, Goldstein LE (2020) Repetitive Head Trauma Induces Chronic Traumatic Encephalopathy by Multiple Mechanisms. Semin Neurol 40: 430–438. https://doi.org/10.1055/s-0040–1713620
- Baird LC, Newman CB, Volk H, Svinth JR, Conklin J, Levy ML (2010) Mortality resulting from head injury in professional boxing. Neurosurgery 67: 1444–1450. https://doi.org/10.1227/NEU.0b013e3181e5e2cd
- Shahim P, Tegner Y, Marklund N, Blennow K, Zetterberg H (2018) Neurofilament light and tau as blood biomarkers for sports-related concussion. Neurology 90: E1780–E1788. https://doi.org/10.1212/WNL.0000000000005518
- Siman R, Shahim P, Tegner Y, Blennow K, Zetterberg H, Smith DH (2015) Serum SNTF Increases in Concussed Professional Ice Hockey Players and Relates to the Severity of Postconcussion Symptoms. J Neurotrauma 32: 1294–1300. https://doi.org/10.1089/neu.2014.3698
- McCrea M, Broglio SP, McAllister TW, Gill J, Giza CC, Huber DL, Harezlak J, Cameron KL, Houston MN, McGinty G, Jackson JC, Guskiewicz K, Mihalik J, Brooks MA, Duma S, Rowson S, Nelson LD, Pasquina P, Meier TB, Foroud T, Katz BP, Saykin AJ, Campbell DE, Svoboda SJ, Goldman J, Difiori J (2020) Association of Blood Biomarkers with Acute Sport-Related Concussion in Collegiate Athletes: Findings from the NCAA and Department of Defense CARE Consortium. JAMA Netw Open 3: 1919771–1919771. https://doi.org/10.1001/jamanetworkopen.2019.19771
- Agoston D V., McCullough J, Aniceto R, Lin IH, Kamnaksh A, Eklund M, Graves WM, Dunbar C, Engall J, Schneider EB, Leonessa F, Duckworth JL (2022) Blood-Based Biomarkers of Repetitive, Subconcussive Blast Overpressure Exposure in the Training Environment: A Pilot Study. Neurotrauma Rep 3: 479–490. https://doi.org/10.1089/neur.2022.0029
- Stern RA, Daneshvar DH, Baugh CM, Daniel Seichepine MR, Montenigro PH, David Riley BO, Nathan Fritts BG, Julie Stamm BM, Clifford Robbins BA, Lisa McHale B, Irene Simkin E, Thor Stein MD, Alvarez VE, Goldstein LE, Budson AE, Kowall NW, Nowinski CJ, Robert Cantu AC, McKee AC (2013) Clinical presentation of chronic traumatic encephalopathy. Neurology 13: 1122–1129. https://doi.org/10.1212/WNL.0b013e3182a55f7f
- Albayram O, Herbert MK, Kondo A, Tsai CY, Baxley S, Lian X, Hansen M, Zhou XZ, Lu KP (2016) Function and regulation of tau conformations in the development and treatment of traumatic brain injury and neurodegeneration. Cell Biosci 6: 1–6. https://doi.org/10.1186/s13578–016–0124–4
- Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, Davidson B, Granholm AC, Mustapic M, Kapogiannis D, Tweedie D, Greig NH (2020) Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J 34: 3359–3366. https://doi.org/10.1096/fj.201902842R
- Arvanitis DN, Behar A, Drougard A, Roullet P, Davy A (2014) Cortical abnormalities and non-spatial learning deficits in a mouse model of CranioFrontoNasal syndrome. PLoS One 9: 1–12. https://doi.org/10.1371/journal.pone.0088325
- Michinaga S, Kimura A, Hatanaka S, Minami S, Asano A, Ikushima Y, Matsui S, Toriyama Y, Fujii M, Koyama Y (2018) Delayed Administration of BQ788, an ETB Antagonist, after Experimental Traumatic Brain Injury Promotes Recovery of Blood-Brain Barrier Function and a Reduction of Cerebral Edema in Mice. J Neurotrauma 35: 1481–1494. https://doi.org/10.1089/neu.2017.5421
- Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y (2020) Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology 175: 1481–1494. https://doi.org/10.1016/j.neuropharm.2020.108182
- Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM (2016) White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol 275: 328–333. https://doi.org/10.1016/j.expneurol.2015.02.011
- Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, dos Santos PCR, Franzén E, Granacher U (2022) The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 80: 1–18. https://doi.org/10.1016/j.arr.2022.101698
- Vasile L, Gheorghe N (2018) adaptation of swimmers by using progressive systems. Discobolul 14: 5–9.
- El-Sayes J, Harasym D, Turco C V., Locke MB, Nelson AJ (2019) Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 25: 65–85. https://doi.org/10.1177/1073858418771538
- Contreras-Osorio F, Campos-Jara C, Martínez-Salazar C, Chirosa-Ríos L, Martínez-García D (2021) brain sciences Systematic Review Effects of Sport-Based Interventions on Children’s Executive Function: A Systematic Review and Meta-Analysis. Brain Sci 11: 755–773. https://doi.org/10.3390/brainsci
- Petzinger G, Fisher B, McEwen S, Beeler S, Walsh J, Jakowec MENT (2013) Cognitive Circuitry in Parkinson’s Disease. Lancet Neurol 12: 716–726. https://doi.org/10.1016/S1474–4422(13)70123–6
- Pahlavani HA (2023) Exercise therapy to prevent and treat Alzheimer’s disease. Front Aging Neurosci 15: 1–16. https://doi.org/10.3389/fnagi.2023.1243869
- Lehmann N, Villringer A, Taubert M (2020) Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning. J Neurosci 40: 2416–2429. https://doi.org/10.1523/JNEUROSCI.2310–19.2020
- Coelho FGDM, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, Teodorov E, Santos-Galduróz RF (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimer’s Dis 39: 401–408. https://doi.org/10.3233/JAD-131073
- Sampaio-Baptista C, Scholz J, Jenkinson M, Thomas AG, Filippini N, Smit G, Douaud G, Johansen-Berg H (2014) Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage 96: 158–166. https://doi.org/10.1016/j.neuroimage.2014.03.056
- Uryu K, Laurer H, McIntosh T, Praticò D, Martinez D, Leight S, M-Y Lee V, Trojanowski JQ (2002) Repetitive Mild Brain Trauma Accelerates A Deposition, Lipid Peroxidation, and Cognitive Impairment in a Transgenic Mouse Model of Alzheimer Amyloidosis. J Neurosci 22: 446–454. https://doi.org/10.1523/JNEUROSCI.22–02–00446.2002
- Hiskens MI, Pérez MA, Schneiders AG, Vella RK, Fenning AS (2019) Modeling sports ‐ related mild traumatic brain injury in animals – A systematic review. J Neurosci Res 10: 1194–1222. https://doi.org/10.1002/jnr.24472
- Viano DC, Säljö A (2009) Concussion in professional football animal model of brain injury – part 15. Neurosurgery 64: 1162–1173. https://doi.org/10.1227/01.NEU.0000345863.99099.C7
- Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Viano DC, Kuhn DM (2014) Animal models of sports-related head injury bridging the gap between pre-clinical research and clinical reality. J Neurochem 10.1111: 1–16. https://doi.org/10.1111/jnc.12690
- Mela V, Mota BC, Milner M, McGinley A, Mills KHG, Kelly ÁM, Lynch MA (2020) Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav Immun 87: 413–428. https://doi.org/10.1016/j.bbi.2020.01.012
- Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, Pettersson AT, Ferreira DMS, Krook A, Barres R, Zierath JR, Erhardt S, Lindskog M, Ruas JL (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159: 33–45. https://doi.org/10.1016/j.cell.2014.07.051
- Barad Z, Augusto J, Kelly ÁM (2023) Exercise-induced modulation of neuroinflammation in ageing. J Physiol 601: 2069–2084. https://doi.org/10.1113/JP282894#support-information-section
- Ehninger D, Kempermann G (2003) Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebr Cortex 13: 845–851. https://doi.org/10.1093/cercor/13.8.845
- Olah M, Ping G, De Haas AH, Brouwer N, Meerlo P, Van Der Zee EA, Biber K, Boddeke HWGM (2009) Enhanced hippocampal neurogenesis in the absence of microglia T cell interaction and microglia activation in the murine running wheel model. Glia 57: 1046–1061. https://doi.org/10.1002/glia.20828
- Vukovic J, Colditz MJ, Blackmore DG, Ruitenberg MJ, Bartlett PF (2012) Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci 32: 6435–6443. https://doi.org/10.1523/JNEUROSCI.5925–11.2012
- Fahimi A, Baktir MA, Moghadam S, Mojabi FS, Sumanth K, McNerney MW, Ponnusamy R, Salehi A (2017) Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling. Brain Struct Funct 222: 1797–1808. https://doi.org/10.1007/s00429–016–1308–8
- Saur L, Baptista PPA, De Senna PN, Paim MF, Nascimento P Do, Ilha J, Bagatini PB, Achaval M, Xavier LL (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 219: 293–302. https://doi.org/10.1007/s00429–012–0500–8
- Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, Ji X, Leak RK, Gao Y, Chen J, Hu X (2016) Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery after Cerebral Ischemia. Stroke 47: 498–504. https://doi.org/10.1161/STROKEAHA.115.012079
- Zhang Y, Cao RY, Jia X, Li Q, Qiao L, Yan G, Yang J (2016) Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators. Neuropsychiatr Dis Treat 12: 3161–3173. https://doi.org/10.2147/NDT.S121779
- Leem YH, Lee YI, Son HJ, Lee SH (2011) Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 406: 359–365. https://doi.org/10.1016/j.bbrc.2011.02.046
- Zhang J, Guo Y, Wang Y, Song L, Zhang R, Du Y (2018) Long-term treadmill exercise attenuates Aβ burdens and astrocyte activation in APP/PS1 mouse model of Alzheimer’s disease. Neurosci Lett 666: 70–77. https://doi.org/10.1016/j.neulet.2017.12.025
- Zhang S shan, Zhu L, Peng Y, Zhang L, Chao F lei, Jiang L, Xiao Q, Liang X, Tang J, Yang H, He Q, Guo Y jing, Zhou C ni, Tang Y (2022) Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammat 19: 1–21. https://doi.org/10.1186/s12974–022–02401–5
- Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee KA, McGowan SJ, Burrack AL, Wang D, Dong Q, Lu A, Sano T, O’Kelly RD, McGuckian CA, Kato JI, Bank MP, Wade EA, Pillai SPS, Klug J, Ladiges WC, Burd CE, Lewis SE, LaRusso NF, Vo N V, Wang Y, Kelley EE, Huard J, Stromnes IM, Robbins PD, Niedernhofer LJ (2021) An aged immune system drives senescence and ageing of solid organs. Nature 594: 100–105. https://doi.org/10.1038/s41586–021–03547–7
- Connolly MG, Bruce SR, Kohman RA (2022) Exercise Duration Differentially Effects Age-related Neuroinflammation and Hippocampal Neurogenesis. Neuroscience 490: 275–286. https://doi.org/10.1016/j.neuroscience.2022.03.022
- Dallagnol KMC, Remor AP, da Silva RA, Prediger RD, Latini A, Aguiar AS (2017) Running for REST: Physical activity attenuates neuroinflammation in the hippocampus of aged mice. Brain Behav Immun 61: 31–35. https://doi.org/10.1016/j.bbi.2016.07.159
- Gomes Da Silva S, Santos P, Simões R, Mortara RA, Scorza FA, Cavalheiro EA, Da M, Naffah-Mazzacoratti G, Arida RM (2013) Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflammat 10: 1–6. https://doi.org/10.1186/1742–2094–10–61
- Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, Moysés F dos S, Vizuete A, Spindler C, Cechinel LR, Netto CA, Muotri AR, Siqueira IR (2013) Treadmill exercise induces age-related changes in aversive memory, Neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 101: 94–102. https://doi.org/10.1016/j.nlm.2013.01.007
