Особенности функционирования клеток мозга при гипергликемии и сахарном диабете

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гипергликемия является симптомом и повреждающим фактором при сахарном диабете (СД), приводящим к системным осложнениям в организме, в том числе к макро- и микроангиопатиям головного мозга, нарушению кровоснабжения, появлению очагов нейродегенерации и запуску нейровоспаления. Нервная ткань характеризуется высоким уровнем потребления энергии и высокочувствительна к колебаниям уровня метаболических субстратов. Таким образом, крайне актуальным является исследование влияния высокого уровня глюкозы на функциональное состояние ЦНС. В обзоре предпринята попытка комплексно оценить последствия гипергликемии для клеток мозга. Анализ экспериментальных данных, полученных в in vivo и in vitro моделях СД, описывающих изменения морфофункционального состояния нейронов, микроглии и астроцитов, показал, что прямое и опосредованное влияние глюкозы в высокой концентрации зависит от типа клеток. Рецепторы и внутриклеточные сигнальные каскады астроцитов и микроглии, опосредующие действие гипергликемии и развитие нейровоспаления, могут выступать в качестве терапевтических мишеней коррекции последствий СД. Поэтому поиск способов модуляции функциональной активности глиальных клеток может оказаться эффективной стратегией для снижения тяжести последствий поражения ЦНС.

Полный текст

Доступ закрыт

Об авторах

М. П. Морозова

Российский национальный исследовательский медицинский университет им. Н. И. Пирогова

Автор, ответственный за переписку.
Email: mormasha@gmail.com

Институт физиологии

Россия, Москва

И. Г. Савинкова

Российский национальный исследовательский медицинский университет им. Н. И. Пирогова

Email: mormasha@gmail.com

Институт физиологии

Россия, Москва

Л. Р. Горбачева

Российский национальный исследовательский медицинский университет им. Н. И. Пирогова; Московский государственный университет имени М. В. Ломоносова

Email: mormasha@gmail.com

Институт физиологии

Россия, Москва; Москва

Список литературы

  1. Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ, Петеркова ВА, Артемова ЕВ, Бардюгов ПС, Бешлиева ДД, Бондаренко ОН, Бурумкулова ФФ, Викулова ОК, Волеводз НН, Галстян ГР, Гомова ИС, Григорян ОР, Джемилова ЗН, Ибрагимова ЛИ, Калашников ВЮ, Кононенко ИВ, Кураева ТЛ, Лаптев ДН, Липатов ДВ, Мельникова ОГ, Михина МС, Мичурова МС, Мотовилин ОГ, Никонова ТВ, Роживанов РВ, Смирнова ОМ, Старостина ЕГ, Суркова ЕВ, Сухарева ОЮ, Тиселько АВ, Токмакова АЮ, Шамхалова МШ, Шестакова ЕА, Ярек-Мартынова ИЯ, Ярославцева МВ (2023) Алгоритмы специализированной медицинской помощи больным сахарным диабетом. (ред) ИИ Дедов, МВ Шестакова, АЮ Майоров 11-й вып Сахарный диабет 26(2S): 1–157. [Dedov I, Shestakova M, Mayorov A, Mokrysheva N, Andreeva E, Bezlepkina O, Peterkova V, Artemova E, Bardiugov P, Beshlieva D, Bondarenko O, Burumkulova F, Vikulova O, Volevodz N, Galstyan G, Gomova I, Grigoryan O, Dzhemilova Z, Ibragimova L, Kalashnikov V, Kononenko I, Kuraeva T, Laptev D, Lipatov D, Melnikova O, Mikhina M, Michurova M, Motovilin O, Nikonova T, Rozhivanov R, Smirnova O, Starostina E, Surkova E, Sukhareva O, Tiselko A, Tokmakova A, Shamkhalova M, Shestakova E, Jarek-Martynowa I, Yaroslavceva M (2023) Standards of Specialized Diabetes Care (Eds) Dedov II, Shestakova MV, Mayorov AYu 11th Edit Diabetes mellitus 26(2S): 1–157. (In Russ)]. https://doi.org/10.14341/DM13042
  2. Luna R, Talanki Manjunatha R, Bollu B, Jhaveri S, Avanthika C, Reddy N, Saha T, Gandhi F (2021) A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 13(10): e19142. https://doi.org/10.7759/cureus.19142
  3. Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S (2019) Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 13: 25. https://doi.org/10.3389/fnins.2019.00025
  4. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2): 119. https://doi.org/10.1038/s41419–017–0135-z
  5. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820. https://doi.org/10.1038/414813a
  6. Попыхова ЭБ, Степанова ТВ, Лагутина ДД, Кириязи ТС, Иванов АН (2020) Роль сахарного диабета в возникновении и развитии эндотелиальной дисфункции. Пробл эндокринол 66(1): 47–55. [Popykhova EB, Stepanova TB, Lagutina DD, Kirijazi TS, Ivanov AN (2020) The role of diabetes mellitus in the occurrence and development of endothelial dysfunction. Probl Endocrinol 66(1): 47–55. (In Russ)]. https://doi.org/10.14341/probl12212
  7. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014: 137919. https://doi.org/10.1155/2014/137919
  8. Kohnert KD, Freyse EJ, Salzsieder E (2012) Glycaemic variability and pancreatic β-cell dysfunction. Curr Diabetes Rev 8(5): 345–354. https://doi.org/10.2174/157339912802083513
  9. Erekat NS (2022) Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis. Med Sci Monit 28: e937766. https://doi.org/10.12659/MSM.937766
  10. Shen J, San W, Zheng Y, Zhang S, Cao D, Chen Y, Meng G (2023) Different types of cell death in diabetic endothelial dysfunction. Biomed Pharmacother 168: 115802. https://doi.org/10.1016/j.biopha.2023.115802
  11. Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L (2023) Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 10: 1135723. https://doi.org/10.3389/fcvm.2023.1135723
  12. Yang L, Tong Y, Chen PF, Miao S, Zhou RY (2020) Neuroprotection of dihydrotestosterone via suppression of the toll-like receptor 4/nuclear factor-kappa B signaling pathway in high glucose-induced BV-2 microglia inflammatory responses. Neuroreport 31(2): 139–147. https://doi.org/10.1097/WNR.0000000000001385
  13. Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, Wang Z, Ji L (2019) Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. FASEB J 33(11): 11776–11790. https://doi.org/10.1096/fj.201802614RRR
  14. Mei X, Zhou L, Zhang T, Lu B, Sheng Y, Ji L (2018) Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis. Vascul Pharmacol 101: 29–37. https://doi.org/10.1016/j.vph.2017.11.002
  15. Yu Z, Zhang T, Gong C, Sheng Y, Lu B, Zhou L, Ji L, Wang Z (2016) Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α-VEGF/VEGFR2 signaling pathway. Sci Rep 6: 34306. https://doi.org/10.1038/srep34306
  16. Lovestone S, Smith U (2014) Advanced glycation end products, dementia, and diabetes. Proc Natl Acad Sci U S A 111(13): 4743–4744. https://doi.org/10.1073/pnas.1402277111
  17. Kaur G, Harris NR (2023) Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 324(5): C1061–C1077. https://doi.org/10.1152/ajpcell.00188.2022
  18. Ikonomidis I, Pavlidis G, Lambadiari V, Kousathana F, Varoudi M, Spanoudi F, Maratou E, Parissis J, Triantafyllidi H, Dimitriadis G, Lekakis J (2017) Early detection of left ventricular dysfunction in first-degree relatives of diabetic patients by myocardial deformation imaging: The role of endothelial glycocalyx damage. Int J Cardiol 233: 105–112. https://doi.org/10.1016/j.ijcard.2017.01.056
  19. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47(6): 442–448. https://doi.org/10.1016/j.neuint.2005.05.014
  20. Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA 288(20): 2579–2588. https://doi.org/10.1001/jama.288.20.2579
  21. Vlassara H, Striker GE (2013) Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am 42(4): 697–719. https://doi.org/10.1016/j.ecl.2013.07.005
  22. Obrosova IG, Drel VR, Pacher P, Ilnytska O, Wang ZQ, Stevens MJ, Yorek MA (2005) Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 54(12): 3435–3441. https://doi.org/10.2337/diabetes.54.12.3435
  23. Худякова НВ, Иванов НВ, Пчелин ИЮ, Шишкин АН, Ворохобина НВ, Байрашева ВК, Василькова ОН (2019) Диабетическая нейропатия: молекулярные механизмы развития и возможности патогенетической терапии. Juvenis scientia 4: 8–12. [Khudjakova NV, Ivanov NV, Pchelin IYu, Shishkin AN, Vorokhobina NV, Bairasheva VK, Vasilkova ON (2019) Diabetic neuropathy: molecular mechanisms of development and possibilities of pathogenetic therapy. Juvenis scientia 4: 8–12. (In Russ)].
  24. Sun J, Chen L, Chen R, Lou Q, Wang H (2021) Poly(ADP-ribose) Polymerase-1: An Update on Its Role in Diabetic Retinopathy. Discov Med 32(165): 13–22.
  25. Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F (2021). Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 22(22): 12366. https://doi.org/10.3390/ijms222212366
  26. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW (2019) Global trends in diabetes complications: a review of current evidence. Diabetologia 62(1): 3–16. https://doi.org/10.1007/s00125–018–4711–2
  27. Ito F, Sono Y, Ito T (2019) Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants (Basel) 8(3): 72. https://doi.org/10.3390/antiox8030072
  28. Kamada H, Yu F, Nito C, Chan PH (2007) Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke 38(3): 1044–1049. https://doi.org/10.1161/01.STR.0000258041.75739.cb
  29. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014: 102158. https://doi.org/10.1155/2014/102158
  30. Liyanagamage DSNK, Martinus RD (2020) Role of Mitochondrial Stress Protein HSP60 in Diabetes-Induced Neuroinflammation. Mediators Inflamm 2020: 8073516. https://doi.org/10.1155/2020/8073516
  31. Vincent AM, Brownlee M, Russell JW (2002). Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci 959: 368–383. https://doi.org: 10.1111/j.1749–6632.2002.tb02108.x
  32. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2): 119. https://doi.org: 10.1038/s41419–017–0135-z
  33. Рыбакова ЛП, Алексанян ЛР, Капустин СИ, Бессмельцев СС (2020) Окислительно-антиокислительная система организма человека, роль в развитии патологического процесса и его коррекции. Вестн гематол 18(4): 26–37. [Rybakova LP, Aleksanjan LR, Kapustin SI, Bessmeltsev SS (2020) The oxidative-antioxidative system of the human body, its role in the development of the pathological process and its correction. Bull Hematol 18(4): 26–37. (In Russ)].
  34. Sasaki-Hamada S, Sanai E, Kanemaru M, Kamanaka G, Oka JI (2022) Long-term exposure to high glucose induces changes in the expression of AMPA receptor subunits and glutamate transmission in primary cultured cortical neurons. Biochem Biophys Res Commun 589: 48–54. https://doi.org/10.1016/j.bbrc.2021.11.108
  35. Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, Yang SH (2018) Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation. Aging Dis 9(4): 674–684. https://doi.org/10.14336/AD.2017.1208
  36. Seaquist ER (2010) The final frontier: how does diabetes affect the brain? Diabetes 59(1): 4–5. https://doi.org: 10.2337/db09–1600
  37. Klein JP, Waxman SG (2003) The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurol 2(9): 548–554. https://doi.org: 10.1016/s1474–4422(03)00503–9
  38. Wang C, Li J, Zhao S, Huang L (2020). Diabetic encephalopathy causes the imbalance of neural activities between hippocampal glutamatergic neurons and GABAergic neurons in mice. Brain Res 1742: 146863. https://doi.org: 10.1016/j.brainres.2020.146863
  39. Yonamine CY, Michalani MLE, Moreira RJ, Machado UF (2023) Glucose Transport and Utilization in the Hippocampus: From Neurophysiology to Diabetes-Related Development of Dementia. Int J Mol Sci 24(22): 16480. https://doi.org/10.3390/ijms242216480
  40. Yun JH, Lee DH, Jeong HS, Kim HS, Ye SK, Cho CH (2021) STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J Cell Physiol 236(10): 7058–7070. https://doi.org/10.1002/jcp.30373
  41. Deng J, Chen L, Ding K, Wang Y (2021) Acute glucose fluctuation induces inflammation and neurons apoptosis in hippocampal tissues of diabetic rats. J Cell Biochem 122(9): 1239–1247. https://doi.org/10.1002/jcb.29523
  42. Foghi K, Ahmadpour S (2013). Diabetes mellitus type 1 and neuronal degeneration in ventral and dorsal hippocampus. Iran J Pathol 9(1): 33–37.
  43. Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi (2016) The Effect of Diabetes Mellitus on Apoptosis in Hippocampus: Cellular and Molecular Aspects. Int J Prev Med 7: 57. https://doi.org/10.4103/2008–7802.178531
  44. Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS (2023). Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 14(2): 92–109. https://doi.org/10.4239/wjd.v14.i2.92
  45. Ripoli C, Spinelli M, Natale F, Fusco S, Grassi C (2020) Glucose Overload Inhibits Glutamatergic Synaptic Transmission: A Novel Role for CREB-Mediated Regulation of Synaptotagmins 2 and 4. Front Cell Dev Biol 8: 810. https://doi.org/10.3389/fcell.2020.00810
  46. Ho N, Sommers MS, Lucki I (2013) Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev 37(8): 1346–1362. https://doi.org/10.1016/j.neubiorev.2013.03.010
  47. Guyot LL, Diaz FG, O’Regan MH, Song D, Phillis JW (2001) The effect of streptozotocin-induced diabetes on the release of excitotoxic and other amino acids from the ischemic rat cerebral cortex. Neurosurgery 48(2): 385–391. https://doi.org/10.1097/00006123–200102000–00030
  48. Baptista FI, Gaspar JM, Cristóvão A, Santos PF, Köfalvi A, Ambrósio AF (2011) Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Res 1383: 257–269. https://doi.org/10.1016/j.brainres.2011.01.071
  49. Ramakrishnan R, Kempuraj D, Prabhakaran K, Jayakumar AR, Devi RS, Suthanthirarajan N, Namasivayam A (2005) A short-term diabetes induced changes of catecholamines and p38-MAPK in discrete areas of rat brain. Life Sci 77(15): 1825–1835. https://doi.org/10.1016/j.lfs.2004.12.038
  50. Yamato T, Misumi Y, Yamasaki S, Kino M, Aomine M (2004) Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr Metab 17: 128–136.
  51. Sherin A, Anu J, Peeyush KT, Smijin S, Anitha M, Roshni BT, Paulose CS (2012) Cholinergic and GABAergic receptor functional deficit in the hippocampus of insulin-induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience 202: 69–76. https://doi.org/10.1016/j.neuroscience.2011.11.058
  52. Liu J, Feng L, Ma D, Zhang M, Gu J, Wang S, Fu Q, Song Y, Lan Z, Qu R, Ma S (2013) Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neurosci Lett 549: 63–68. https://doi.org/10.1016/j.neulet.2013.06.002
  53. Jing YH, Chen KH, Kuo PC, Pao CC, Chen JK (2013) Neurodegeneration in streptozotocin-induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology 98(2): 116–127. https://doi.org/10.1159/000350435
  54. Borst K, Dumas AA, Prinz M (2021) Microglia: Immune and non-immune functions. Immunity 54(10): 2194–2208. https://doi.org/10.1016/j.immuni.2021.09.014
  55. Colonna M, Butovsky O (2017) Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 35: 441–468. https://doi.org/10.1146/annurev-immunol-051116–052358
  56. Liu Y, Li M, Zhang Z, Ye Y, Zhou J (2018) Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 42: 28–39. https://doi.org/10.1016/j.arr.2017.12.005
  57. Gómez Morillas A, Besson VC, Lerouet D (2021) Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 22(4): 1636. https://doi.org/10.3390/ijms22041636
  58. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1): 42. https://doi.org/10.1186/s40035–020–00221–2
  59. Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M (2019) Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 14(1): 2. https://doi.org/10.1186/s13024–019–0305–9
  60. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4): 649–665. https://doi.org/10.1111/bph.13139
  61. Castillo E, Mocanu E, Uruk G, Swanson RA (2021) Glucose availability limits microglial nitric oxide production. J Neurochem 159(6): 1008–1015. https://doi.org/10.1111/jnc.15522
  62. Baptista FI, Aveleira CA, Castilho ÁF, Ambrósio AF (2017) Elevated Glucose and Interleukin-1β Differentially Affect Retinal Microglial Cell Proliferation. Mediat Inflamm 2017: 4316316. https://doi.org/10.1155/2017/4316316
  63. Liu H, Bian W, Yang D, Yang M, Luo H (2021) Inhibiting the Piezo1 channel protects microglia from acute hyperglycaemia damage through the JNK1 and mTOR signalling pathways. Life Sci 264: 118667. https://doi.org/10.1016/j.lfs.2020.118667
  64. Wang LQ, Zhou HJ (2018) LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep 8(1): 8346. https://doi.org/10.1038/s41598–018–26421–5
  65. Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6(1): 162. https://doi.org/10.1038/s41392–021–00553-z
  66. Chen C, Wu S, Hong Z, Chen X, Shan X, Fischbach S, Xiao X (2019) Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY) 11(2): 697–706. https://doi.org/10.18632/aging.101770
  67. Vargas-Soria M, García-Alloza M, Corraliza-Gómez M (2023) Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammat 20(1): 57. https://doi.org/10.1186/s12974–023–02740-x
  68. Kongtawelert P, Kaewmool C, Phitak T, Phimphilai M, Pothacharoen P, Shwe TH (2022) Sesamin protects against neurotoxicity via inhibition of microglial activation under high glucose circumstances through modulating p38 and JNK signaling pathways. Sci Rep 12(1): 11296. https://doi.org/10.1038/s41598–022–15411–3
  69. Pereira Tde O, da Costa GN, Santiago AR, Ambrósio AF, dos Santos PF (2010) High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res 1316: 129–138. https://doi.org/10.1016/j.brainres.2009.12.034
  70. Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L (2023) Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 29(1): 24–36. https://doi.org/10.1111/cns.13982
  71. Souza DG, Almeida RF, Souza DO, Zimmer ER (2019) The astrocyte biochemistry. Semin Cell Dev Biol 95: 142–150. https://doi.org/10.1016/j.semcdb.2019.04.002
  72. Xiong XY, Tang Y, Yang QW (2022) Metabolic changes favor the activity and heterogeneity of reactive astrocytes. Trends Endocrinol Metab 33(6): 390–400. https://doi.org/10.1016/j.tem.2022.03.001
  73. Garvin J, Semenikhina M, Liu Q, Rarick K, Isaeva E, Levchenko V, Staruschenko A, Palygin O, Harder D, Cohen S (2022) Astrocytic responses to high glucose impair barrier formation in cerebral microvessel endothelial cells. Am J Physiol Regul Integr Comp Physiol 322(6): R571–R580. https://doi.org/10.1152/ajpregu.00315.2020
  74. Almeida A, Jimenez-Blasco D, Bolaños JP (2023) Cross-talk between energy and redox metabolism in astrocyte-neuron functional cooperation. Essays Biochem 67(1): 17–26. https://doi.org/10.1042/EBC20220075
  75. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98(1): 239–389. https://doi.org/10.1152/physrev.00042.2016
  76. Staricha K, Meyers N, Garvin J, Liu Q, Rarick K, Harder D, Cohen S (2020) Effect of high glucose condition on glucose metabolism in primary astrocytes. Brain Res 1732: 146702. https://doi.org/10.1016/j.brainres.2020.146702
  77. Bastian C, Quinn J, Doherty C, Franke C, Faris A, Brunet S, Baltan S (2019) Role of Brain Glycogen During Ischemia, Aging and Cell-to-Cell Interactions. Adv Neurobiol 23: 347–361. https://doi.org/10.1007/978–3–030–27480–1_12
  78. Takahashi S (2021) Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int J Mol Sci 22(12): 6568. https://doi.org/10.3390/ijms22126568
  79. Min LJ, Mogi M, Shudou M, Jing F, Tsukuda K, Ohshima K, Iwanami J, Horiuchi M (2012) Peroxisome proliferator-activated receptor-γ activation with angiotensin II type 1 receptor blockade is pivotal for the prevention of blood-brain barrier impairment and cognitive decline in type 2 diabetic mice. Hypertension 59(5): 1079–1088. https://doi.org/10.1161/HYPERTENSIONAHA.112.192401
  80. Gandhi GK, Ball KK, Cruz NF, Dienel GA (2010) Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro 2(2): e00030. https://doi.org/10.1042/AN20090048
  81. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 202: 58–68. https://doi.org/10.1016/j.neuroscience.2011.11.062
  82. McConnell HL, Li Z, Woltjer RL, Mishra A (2019) Astrocyte dysfunction and neurovascular impairment in neurological disorders: correlation or causation? Neurochem Int 128: 70–84. https://doi.org/10.1016/j.neuint.2019.04.005
  83. Chistyakov DV, Goriainov SV, Astakhova AA, Sergeeva MG (2021) High Glucose Shifts the Oxylipin Profiles in the Astrocytes towards Pro-Inflammatory States. Metabolites 11(5): 311. https://doi.org/10.3390/metabo11050311
  84. Abdyeva A, Kurtova E, Savinkova I, Galkov M, Gorbacheva L (2024) Long-Term Exposure of Cultured Astrocytes to High Glucose Impact on Their LPS-Induced Activation. Int J Mol Sci 25(2): 1122. https://doi.org/10.3390/ijms25021122
  85. Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, Yang SH (2018) Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation. Aging Dis 9(4): 674–684. https://doi.org/10.14336/AD.2017.1208
  86. Nikolic L, Nobili P, Shen W, Audinat E (2020) Role of astrocyte purinergic signaling in epilepsy. Glia 68(9): 1677–1691. https://doi.org/ 10.1002/glia.23747
  87. Klug NR, Chechneva OV, Hung BY, O'Donnell ME (2021) High glucose-induced effects on Na+-K+-2Cl– cotransport and Na+/H+ exchange of blood-brain barrier endothelial cells: involvement of SGK1, PKCβII, and SPAK/OSR1. Am J Physiol Cell Physiol 320(4): C619–C634. https://doi.org/10.1152/ajpcell.00177.2019
  88. Liu W, Zhou Y, Liang R, Zhang Y (2019) Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits. FASEB J 33(12): 14506–14515. https://doi.org/10.1096/fj.201901292R
  89. Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, Bolaños JP (2019) Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 1(2): 201–211. https://doi.org/10.1038/s42255–018–0031–6
  90. Rivera-Aponte DE, Melnik-Martínez KV, Malpica-Nieves CJ, Tejeda-Bayron F, Méndez-González MP, Skatchkov SN, Eaton MJ (2020) Kir4.1 potassium channel regulation via microRNA-205 in astrocytes exposed to hyperglycemic conditions. Neuroreport 31(6): 450–455. https://doi.org/10.1097/WNR.0000000000001427
  91. Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, de Almeida LM, Battastini AM, Gottfried C, Gonçalves CA (2007) S100B content and secretion decrease in astrocytes cultured in high-glucose medium. Neurochem Int 50(5): 774–782. https://doi.org/10.1016/j.neuint.2007.01.013
  92. Kelleher JA, Chan PH, Chan TY, Gregory GA (1993) Modification of hypoxia-induced injury in cultured rat astrocytes by high levels of glucose. Stroke 24(6): 855–863. https://doi.org/10.1161/01.str.24.6.855

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Основные метаболические пути, активируемые при гипергликемии и приводящие к развитию диабетической нейропатии. Условные обозначения: АФК – активные формы кислорода, ДАГ – диацилглицерол, AGE-продукты – конечные продукты глубокого гликирования, NF-κB – транскрипционный ядерный фактор каппа-В, PARP – поли(АДФ-рибозо)-полимераза, UDP-GlcNAc – уридин-дифосфат-N-ацетилглюкозамин.

Скачать (178KB)
3. Рис. 2. Влияние гипергликемии на взаимодействие нейронов, астроцитов и микроглии, приводящее к нейровоспалению и нейродегенерации.

Скачать (155KB)

© Российская академия наук, 2024