Study of Na+/K+-ATPase and Components of the Ca2+-transporting System in Myocardium under Experimental Prediabetes and Type 1 Diabetes in Rats
- Authors: Sukhov I.B.1, Chistyakova O.V.1, Dobretsov M.G.1
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 110, No 6 (2024)
- Pages: 915-929
- Section: EXPERIMENTAL ARTICLES
- URL: https://cardiosomatics.ru/0869-8139/article/view/651628
- DOI: https://doi.org/10.31857/S0869813924060033
- EDN: https://elibrary.ru/BFBYKQ
- ID: 651628
Cite item
Abstract
One of the complications of diabetes mellitus (DM) is diabetic cardiomyopathy (DCM), the molecular mechanisms of pathogenesis of which have not been fully studied. Previously, the involvement of Na+/K+-ATPase and components of the Ca2+ transport system in cardiomyocytes in the development of DCM was shown. The aim of the work was to study the expression and activity of Na+/K+-ATPase and Ca2+-ATPase (SERCA2) in the myocardium of male Wistar rats in a model of streptozotocin (STZ)-induced prediabetes and overt type 1 diabetes (T1DM). STZ was administered at once i. p. in dose of 30–35 mg/kg. Rats with glucose levels above 11 mM were considered diabetic (STZ-D1 group), and those with moderate hyperglycemia were considered prediabetic (STZ-preD1 group). The activity of Na+/K+-ATPase and Ca2+-ATPase was determined (by the rate of release of inorganic phosphate, Pi), and the expression of the genes α1- and α2-isoforms of Na+/K+-ATPase, SERCA2 and Kir6.1, Kv7.1 and Kv2.1 potassium channels. In the control (C) group, the activity of Mg2+-dependent ATPase (α1- and α2-isoforms of Na+/K+-ATPase), sensitive to 1 mM ouabain, was 6.03±0.6 mmol Pi/g/h. In the STZ-D1 and STZ-preD1 groups, Na+/K+-ATPase activity did not differ from group C. The level of gene expression of α1- and α2- subunits of Na+/K+-ATPase in the STZ-D1 group decreased by more than 45%, then both in the STZ-preD1 group increased by 64 and 81%, which may indicate a high sensitivity of expression to insulinopenia. The activity of Ca2+-ATPase and the expression of the SERCA2 gene did not differ between the groups – probably, the 4-week period after STZ administration is not sufficient for the development of Ca2+-ATPase deficiency in the rat heart. The level of expression of the genes of the potassium channel subtypes Kv2.1, Kir6.1 and Kv7.1 increased in the STZ-preD1 group, which may indicate a certain contribution of the studied potassium channel subtypes to the adaptation mechanism to moderate hyperglycemia.
Keywords
Full Text

About the authors
I. B. Sukhov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Author for correspondence.
Email: sukhov.ivan@gmail.com
Russian Federation, St. Petersburg
O. V. Chistyakova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: sukhov.ivan@gmail.com
Russian Federation, St. Petersburg
M. G. Dobretsov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: sukhov.ivan@gmail.com
Russian Federation, St. Petersburg
References
- Rosta K, Tulassay E, Enzsoly A, Ronai K, Szantho A, Pandics T, Fekete A, Mandl P, Ver A (2009) Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol Sin 30: 1616–1624. https://doi.org/10.1038/aps.2009.162
- Despa S (2018) Myocyte [Na+]i dysregulation in heart failure and diabetic cardiomyopathy. Front Physiol 9: 1–8. https://doi.org/10.3389/fphys.2018.01303
- Algenstaedt P, Antonetti DA, Yaffe MB, Kahn CR (1997) Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart. J Biol Chem 272: 23696–23702. https://doi.org/10.1074/JBC.272.38.23696
- Zarain-Herzberg A, García-Rivas G, Estrada-Avilés R (2014) Regulation of SERCA pumps expression in diabetes. Cell Calcium 56: 302–310. https://doi.org/10.1016/J.CECA.2014.09.005
- Grandy SA, Trépanier-Boulay V, Fiset C (2007) Postnatal development has a marked effect on ventricular repolarization in mice. Am J Physiol – Hear Circ Physiol 293: 2168–2177. https://doi.org/10.1152/AJPHEART.00521.2007
- Сухов ИБ, Чистякова ОВ, Баюнова ЛВ, Шестакова НН (2023) Оценка побочных эффектов применения ингибитора Na-Ca обменника KB-R7943 как противоболевого препарата при диабетической нейропатии у крыс. Интеграт физиол 4: 69–78. [Sukhov IB, Chistyakova OV, Bayunova LV, Shestakova NN (2023) Evaluation of side effects of na-ca exchange inhibitor kb-r7943 used as an analgesic drug in diabetic neuropathy in rats. Integrat fiziol 4: 69–78. (In Russ)]. https://doi.org/10.33910/2687–1270–2023–4–1–69–78
- Amione C, Giunti S, Fornengo P, Soedamah-Muthu SS, Chaturvedi N, Fuller JH, Barutta F, Gruden G, Bruno G (2017) Incidence of prolonged QTc and severe hypoglycemia in type 1 diabetes: the EURODIAB Prospective Complications Study. Acta Diabetol 54: 871–876. https://doi.org/10.1007/S00592–017–1018–6/TABLES/2
- Inanır M, Gunes Y, Sincer I, Erdal E (2020) Evaluation of electrocardiographic ventricular depolarization and repolarization variables in type 1 diabetes mellitus. Arq Bras Cardiol 114: 275–280. https://doi.org/10.36660/ABC.20180343
- Zhang Y, Xiao J, Lin H, Luo X, Wang H, Bai Y, Wang J, Zhang H, Yang B, Wang Z (2007) Ionic mechanisms underlying abnormal qt prolongation and the associated arrhythmias in diabetic rabbits: a role of rapid delayed rectifier K+ current. Cell Physiol Biochem 19: 225–238. https://doi.org/10.1159/000100642
- Gallego M, Zayas-Arrabal J, Alquiza A, Apellaniz B, Casis O (2021) Electrical features of the diabetic myocardium. arrhythmic and cardiovascular safety considerations in diabetes. Front Pharmacol 12: 687256. https://doi.org/10.3389/FPHAR.2021.687256
- Ozturk N, Uslu S, Ozdemir S (2021) Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabet 12: 1–18. https://doi.org/10.4239/wjd.v12.i1.1
- O'Connell KM, Whitesell JD, Tamkun MM (2008) Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 294(1): H229–H237. https://doi.org/10.1152/ajpheart.01038.2007
- Hedegaard ER, Johnsen J, Povlsen JA, Jespersen NR, Shanmuganathan JA, Laursen MR, Kristiansen SB, Simonsen U, Bøtker HE (2016) Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury. J Pharmacol Exp Ther 357(1): 94–102. https://doi.org/10.1124/jpet.115.230409
- Morales-Cano D, Moreno L, Barreira B, Pandolfi R, Chamorro V, Jimenez R, Villamor E, Duarte J, Perez-Vizcaino F, Cogolludo A (2015) Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia. Cardiovasc Res 106(1): 98–108. https://doi.org/10.1093/cvr/cvv020
- Qin D, Huang B, Deng L, El-Adawi H, Ganguly K, Sowers JR, El-Sherif N (2001) Downregulation of K(+) channel genes expression in type I diabetic cardiomyopathy. Biochem Biophys Res Commun 283: 549–553. https://doi.org/10.1006/BBRC.2001.4825
- Huang B, Qin D, El-Sherif N (2001) Spatial alterations of Kv channels expression and K(+) currents in post-MI remodeled rat heart. Cardiovasc Res 52(2): 246–254. https://doi.org/10.1016/s0008–6363(01)00378–9
- Yanni J, Tellez JO, Maczewski M, Mackiewicz U, Beresewicz A, Billeter R, Dobrzynski H, Boyett MR (2011) Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circ Heart Fail 4(4): 496–508. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957647
- Кубасов ИВ, Степанов АВ, Панов АА, Чистякова ОВ, Сухов ИБ, Добрецов МГ (2021) Роль калиевых токов в формировании фазы следовой гиперполяризации внеклеточных потенциалов действия вентрикулярных кардиомиоцитов крысы в норме и при стрептозотоциновом сахарном диабете. Рос физиол журн им ИМ Сеченова 107: 1583–1596. [Kubasov IV, Stepanov AV, Panov AA, Chistyakova OV, Sukhov IB, Dobretsov MG (2021) Role of potassium currents in the formation of after-hyperpolarization phase of extracellular action potentials recorded from the control and diabetic rat heart ventricular myocytes. Russ J Physiol 107: 1583–1596. (In Russ)]. https://doi.org/10.31857/S0869813921120062
- Gaber EM, Jayaprakash P, Qureshi MA, Parekh K, Oz M, Adrian TE, Howarth FC (2014) Effects of a sucrose-enriched diet on the pattern of gene expression, contraction and Ca(2+) transport in Goto-Kakizaki type 2 diabetic rat heart. Exp Physiol 99(6): 881–893. https://doi.org/10.1113/expphysiol.2013.077594
- Mandavia CH, Aroor AR, Demarco VG, Sowers JR (2013) Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci 92: 601–608. https://doi.org/10.1016/J.LFS.2012.10.028
- Sukhov IB, Chistyakova OV (2022) Impact of intranasal insulin administration on Na+/K+-ATPase and Са2+-transporting system components in rat cardiomyocytes with type 1 diabetes mellitus. J Biomed 18: 52–62. https://doi.org/10.33647/2074–5982–18–2–52–62
- Kubasov IV, Arutyunyan RS, Dobretsov MG, Shpakov AO, Matrosova EV (2014) Effect of insulin on characteristics of contractile responses of fast and slow skeletal muscles of rats with acute streptozotocin-induced diabetes. J Evol Biochem Physiol 50: 136–145. https://doi.org/10.1134/S0022093014020069/METRICS
- Dobretsov M, Backonja MM, Romanovsky D, Stimers JR (2011) Animal models of diabetic neuropathic pain. Neuromethods 49: 147–169. https://doi.org/10.1007/978–1–60761–880–5_9/TABLES/3
- Mendez N, Torres-Farfan C, Salazar E, Bascur P, Bastidas C, Vergara K, Spichiger C, Halabi D, Vio CP, Richter HG (2019) Fetal programming of renal dysfunction and high blood pressure by chronodisruption. Front Endocrinol 10: 362. https://doi.org/10.3389/FENDO.2019.00362
- Galuska D, Kotova O, Barrès R, Chibalina D, Benziane B, Chibalin AV (2009) Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 297(1): E38–E49. https://doi.org/10.1152/AJPENDO.90990.2008
- Yu Z, Liu J, Van Veldhoven JPD, Ijzerman AP, Schalij MJ, Pijnappels DA, Heitman LH, De Vries AAF (2016) Allosteric modulation of Kv11.1 (hERG) channels protects against drug-induced ventricular arrhythmias. Circ Arrhythmia Electrophysiol 9(4): e003439. https://doi.org/10.1161/CIRCEP.115.003439
- Alessandri-Haber N, Alcaraz G, Deleuze C, Jullien F, Manrique C, Couraud F, Crest M, Giraud P (2002) Molecular determinants of emerging excitability in rat embryonic motoneurons. J Physiol 541: 25–39. https://doi.org/10.1113/JPHYSIOL.2001.013371
- Liu X, Duan P, Hu X, Li R, Zhu Q (2016) Altered KATP channel subunits expression and vascular reactivity in spontaneously hypertensive rats with age. J Cardiovasc Pharmacol 68: 143–149. https://doi.org/10.1097/FJC.0000000000000394
- Zimmer J, Takahashi T, Hofmann AD, Puri P (2017) Downregulation of KCNQ5 expression in the rat pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 52: 702–705. https://doi.org/10.1016/J.JPEDSURG.2017.01.016
- Hu W, Xu T, Wu P, Pan D, Chen J, Chen J, Zhang B, Zhu H, Li D (2017) Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca2+-ATPase 2a. Sci Rep 7: 41017. https://doi.org/10.1038/SREP41017
- Bublitz M (ed) (2016) P-Type ATPases. Springer. Humana New York. NY. https://doi.org/10.1007/978–1–4939–3179–8
- Lucchesi PA, Sweadner KJ (1991) Postnatal changes in Na, K-ATPase isoform expression in rat cardiac ventricle: conservation of biphasic ouabain affinity. J Biol Chem 266: 9327–9331. https://doi.org/10.1016/s0021–9258(18)31589–8
- Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266: 17067–17071. https://doi.org/10.1016/s0021–9258(19)47340–7
- Saborido A, Delgado J, Megías A (1999) Measurement of sarcoplasmic reticulum Ca2+-ATPase activity and E-type Mg2+-ATPase activity in rat heart homogenates. Anal Biochem 268: 79–88. https://doi.org/10.1006/abio.1998.3043
- Andersen TB, López CQ, Manczak T, Martinez K, Simonsen HT (2015) Thapsigargin – from Thapsia L. to mipsagargin. Molecules 20: 6113–6127. https://doi.org/10.3390/MOLECULES20046113
- Gerbi A, Barbey O, Raccah D, Coste T, Jamme I, Nouvelot A, Ouafik L, Lévy S, Vague P, Maixent JM (1997) Alteration of Na, K-ATPase isoenzymes in diabetic cardiomyopathy: effect of dietary supplementation with fish oil (n-3 fatty acids) in rats. Diabetologia 40: 496–505. https://doi.org/10.1007/S001250050707
- Kato K, Lukas A, Chapman DC, Rupp H, Dhalla NS (2002) Differential effects of etomoxir treatment on cardiac Na+-K+ATPase subunits in diabetic rats. Mol Cell Biochem 232: 57–62. https://doi.org/10.1023/A:1014841216418
- Vlkovičová J, Javorková V, Štefek M, Kyseľová Z, Gajdošíková A, Vrbjar N (2006) Effect of the pyridoindole antioxidant stobadine on the cardiac Na+, K+-ATPase in rats with streptozotocin-induced diabetes Gen Physiol Biophys 25(2): 111–124.
- Vér Á, Szántó I, Bányász T, Csermely P, Végh E, Somogyi J (1997) Changes in the expression of Na+/K+-ATPase isoenzymes in the left ventricle of diabetic rat hearts: effect of insulin treatment. Diabetologia 40: 1255–1262. https://doi.org/10.1007/S001250050818
- Howarth FC, Parekh K, Jayaprakash P, Inbaraj ES, Oz M, Dobrzynski H, Adrian TE (2017) Altered profile of mRNA expression in atrioventricular node of streptozotocin induced diabetic rats. Mol Med Rep 16(4): 3720–3730. https://doi.org/10.3892/mmr.2017.7038
- Chistyakova OV, Sukhov IB, Kubasov IV, Dobretsov MG (2020) The study of rat myocardial Na/K-Atpase activity in experimental conditions of prediabetes and diabetes mellitus. J Evol Biochem Physiol 56: 166–168. https://doi.org/10.31857/S0044452920020047
- Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Jonathan Lederer W, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283(4): H1398–H1408. https://doi.org/10.1152/AJPHEART.00313.2002
- Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281: H1137–H1147.
- Haghighi K, Bidwell P, Kranias EG (2014) Phospholamban interactome in cardiac contractility and survival: A new vision of an old friend. J Mol Cell Cardiol 77: 160–167. https://doi.org/10.1016/j.yjmcc.2014.10.005
- Wang M, Zhang WB, Zhu JH, Fu GS, Zhou BQ (2010) Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca2+-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol 47 Suppl 1: 209–218. https://doi.org/10.1007/s00592–009–0164-x
- Vasanji Z, Dhalla NS, Netticadan T (2004) Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Mol Cell Biochem 261(1–2): 245–249. https://doi.org/10.1023/b: mcbi.0000028762.97754.26
- Fosmo AL, Skraastad ØB (2017) The Kv7 channel and cardiovascular risk factors. Front Cardiovasc Med 4: 314626. https://doi.org/10.3389/FCVM.2017.00075/BIBTEX
- Lengyel C, Virág L, Bíró T, Jost N, Magyar J, Biliczki P, Kocsis E, Skoumal R, Nánási PP, Tóth M, Kecskeméti V, Papp JG, Varró A (2007) Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovasc Res 73(3): 512–520. https://doi.org/10.1016/j.cardiores.2006.11.010
Supplementary files
