Preconditioning with Moderate Hypoxia Increases Tolerance to Subsequent Severe Hypoxia in Rats with LPS-Induced Endotoxemia
- Authors: Donina Z.A.1
-
Affiliations:
- Pavlov Institute of Physiology the Russian Academy of Sciences
- Issue: Vol 110, No 6 (2024)
- Pages: 1009-1019
- Section: EXPERIMENTAL ARTICLES
- URL: https://cardiosomatics.ru/0869-8139/article/view/651634
- DOI: https://doi.org/10.31857/S0869813924060099
- EDN: https://elibrary.ru/BEMYGP
- ID: 651634
Cite item
Abstract
Hyperproduction of mediators of LPS-induced inflammatory process (endotoxicosis, sepsis) initiates the development of acute respiratory failure (ARF), impaired gas exchange, progressive hypoxemia and hypercapnia, hypotension, respiratory arrest and death. Severe sepsis associated with hypoxemia remains the main cause of death, and therefore the development of methods to increase resistance to acute hypoxia in septic patients is an urgent task. The aim of the work was to study the effectiveness of preconditioning with short-term intermittent moderate hypoxia to increase tolerance to subsequent severe hypoxia in rats with LPS-induced endotoxicosis. The experiments were carried out on anesthetized and tracheostomated male Wistar rats. Endotoxicosis was modeled by administration of a lipopolysaccharide solution (Escherichia coli) in an amount of 7 mg/kg. To assess resistance to severe hypoxia, the rebreathing method of (RM) with a gradual decrease in oxygen in the rebreather from 21% to the onset of apnea was used. Hypoxic preconditioning (hypoxic training, HT) was also created by the method of RM in the mode of 3 cycles: reduction of the oxygen fraction in the rebreather to 12% – 3 min, 5 min – normoxia. 3 groups of animals were studied: I-control-NaCl, II–LPS, III–LPS+HT. The following parameters were recorded: external respiration, mean blood pressure (APm.), saturation (SpO2), fraction of inhaled O2, time of onset of apnea, the amount of spontaneous respiratory recovery (autoresuscitation) in the posthypoxic period. It was shown that the administration of LPS under normoxic conditions was accompanied by hyperventilation, hypoxemia and hypotension. The maximum deterioration in resistance to severe hypoxia was observed in rats with LPS, which was manifested by a decrease in APm, SpO2 and a decrease in the possibility of autoresuscitation after hypoxic apnea. The effect of HT prevented a decrease in blood pressure, SpO2 increased by 1.4 times, survival increased by 2 times, which is comparable to the level of normoxia before the introduction of LPS. It is assumed that the effectiveness of hypoxic preconditioning is due to the inhibition of the inflammatory response.
Keywords
Full Text

About the authors
Zh. A. Donina
Pavlov Institute of Physiology the Russian Academy of Sciences
Author for correspondence.
Email: zdonina@mail.ru
Russian Federation, St. Petersburg
References
- Черкасова МН (2021) К проблеме экспериментального моделирования сепсиса. Успехи совр биол 141(4): 368–381. [Cherkasova MN (2021) On the problem of experimental modeling of sepsis. The successes of modern biol 141(4): 368–381. (In Russ)].
- Корнеев КВ (2019) Мышиные модели сепсиса и септического шока. Мол Биол 53(5): 799–814. [Korneev KV (2019) Mouse Models of Sepsis and Septic Shock. Mol Biol 53(5): 799–814. (In Russ)]. https://doi.org/10.1134/S0026898419050100
- Симбирцев АС, Тотолян АА (2015) Цитокины в лабораторной диагностике. Инфекц болезни: новости, мнение, обучение 2: 82–98. [Simbirtsev AS, Totolyan AA (2015) Cytokines in laboratory diagnostics. Infect diseases: news, opinion, education 2: 82–98. (In Russ)].
- Jacono FJ, Mayer CA, Hsieh Y-H, Wilson G, Dick T (2011) Lung and brainstem cytokine levels are associated with breathing pattern changes in a rodent model of acute lung injury. Resp Physiol Neurobiol 178(3): 429–438. https://doi.org/10.1016/j.resp.2011.04.022
- Трушина ЕЮ, Костина ЕМ, Молотилов БА, Типикин ВА, Баранова НИ (2019) Роль цитокинов IL-4, IL-6, IL-8, IL-10 в иммунопатогенезе хронической обструктивной болезни легких. Мед иммунол 21(1): 89–98. [Trushina IM, Kostina EM, Molotilov BA, Tipikin VA, Baranova NI (2019) The role of cytokines IL-4, IL-6, IL-8, IL-10 in the immunopathogenesis of chronic obstructive pulmonary disease. Med Immunol 21(1): 89–98. (In Russ)]. https://doi.org/10.15789/1563–0625–2019–1–89–98
- Hocker AD, Stokes AJ, Powell FL, Huxtable AG (2017) The impact of inflammation on respiratory plasticity. Exp Neurol 287: 243–253. https://doi.org/10.1016/j.expneurol.2016.07.022
- Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4): 606–618. https://doi.org/10.1007/s00134–020–05942–6
- Yıldırım F, Karaman İ, Kaya A (2021) Current situation in ARDS in the light of recent studies: Classification, epidemiology and pharmacotherapeutics. Tuberk Toraks 69(4): 535–546. https://doi.org/10.5578/tt.20219611
- Srzic I, Adam N, Pejak T (2022) Sepsis definition: wat’s new in the treatment guidelines. Acta Clin Croatica 61(Suppl 1): 67–72. https://doi.org/10.20471/acc.2022.61.s1.11
- Saas P, Fan G-C (2023) Editorial: Hypoxia and inflammation: A two-way street. Front Immunol 8: 14:1171116. https://doi.org/10.3389/fimmu.2023.1171116
- Angus DC, van der Poll T (2013) Severe sepsis and septic chock. New Engl J Med 69: 840–851. https://doi.org/10.1056/NEJMra1208623
- Vuichard D, Ganter M, Schimmer R, Suter D, Booy C, Reyes L, Pasch T, Beck-Schimmer B (2005) Hypoxia aggravates lypopolysaccaride-induced lung injury. Clin Exp Immunol 141: 248–260. https://doi.org/10.1111/j.1365–2249.2005.02835.x
- Lorea-Hernández J-J, Morales T, Rivera-Angulo A-J, Alcantara-Gonzalez D, Pena-Ortega F (2016) Microglia modulate respiratory rhythm generation and autoresuscitation. Glia 64: 603–619. https://doi.org/10.1002/glia.22951
- Mirchandani AS, Jenkins SJ, Bain CC,, Sanchez-Garcia MA, Lawson H, Coelho P, Murphy F, Griffith DM, Zhang A, Morrison T, Ly T, Arienti S, Sadiku P, Watts ER, Dickinson RS, Reyes L, Cooper G, Clark S, Lewis D, Kelly V, Spanos C, Musgrave KM, Delaney L, Harper I, Scott J, Parkinson NJ, Rostron AJ, Baillie JK, Clohisey S, Pridans C, Campana L, Lewis PS, Simpson AJ, Dockrell DH, Schwarze J, Hirani N, Ratcliffe PJ, Pugh CW, Kranc K, Forbes SJ, Whyte MKB, Walmsley SR (2022) Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunol 23(6): 927–939. https://doi.org/10.1038/s41590–022–01216-z
- Solaimanzadeh I (2020) Acetazolamide, nifedipine and phosphodiesterase inhibitors: rationale for their utilization as adjunctive countermeasures in the treatment of coronavirus disease 2019 (COVID‐19). Cureus 12(3): e7343. https://doi.org/10.7759/cureus.7343
- Geier MR, Geier DA (2020) Respiratory conditions in coronavirus disease 2019 (COVID‐19): Important considerations regarding novel treatment strategies to reduce mortality. Med Hypotheses 140: 109760. https://doi.org/10.1016/j.mehy
- Semenza GL (2011) Oxygen sensing, homeostasis, and disease. New Engl J Med 36(6): 537–547. https://doi.org/10.1056/NEJMra1011165
- Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S (2015) Hypoxic conditioning as a new therapeutic modality. Front Pediatr 3: 58. https://doi.org/10.3389/fped.2015.00058
- Cai M, Chen X, Shan J, Xu P, Shi X, Chu L, Wang L (2021) Intermittent hypoxic preconditioning: A potential new powerful strategy for COVID-19. Front Pharmacol 12: 643619. https://doi.org/10.3389/fphar.2021.643619
- Supriya R, Singh K, Gao Y, Tao D, Cheour S, Dutheil F, Baker J (2023) Mimicking gene–environment interaction of higher altitude dwellers by intermittent hypoxia training: COVID-19 Preventive strategies. Biology (Basel) 12(1): 6. https://doi.org/10.3390/biology12010006
- Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X (2023) Intermittent hypoxia conditioning: A potential multi-organ protective therapeutic strategy. Int J Med Sci 20(12): 1551–1561. https://doi.org/10.7150/ijms.86622
- Millet GP, Chapman RF, Girard O, Brocherie F (2019) Is live high‐train low altitude training relevant for elite athletes? Flawed analysis from inaccurate data. Br J Sports Med 53: 923–925. https://doi.org/10.1136/bjsports-2017–098083
- Martin A, Millet G, Osredkar D, Mramor M, Faes C, Gouraud E, Debevec T, Pialoux V (2020) Effect of pre‐term birth on oxidative stress responses to normoxic and hypoxic exercise. Redox Biol (32): 101497. https://doi.org/10.1016/j.redox.2020.101497
- DeClue F, Williams K, Sharp C, Haak C, Lechner E, Reinero C (2009) Systemic response to low-dose endotoxin infusion in cats. Veter Immunol Immunopathol 132: 167–174. https://doi.org/10.1016/j.vetimm.2009.06.002
- Kumar S, Adhikari A (2017) Dose-dependent immunomodulating effects of endotoxin in allergic airway inflammation. Innate Immun 23: 249–257. https://doi.org/10.1177/1753425917690443
- Донина ЖА, Баранова ЕВ, Александрова НП (2016) Влияние провоспалительного цитокина интерлейкина 1-β на резистентность организма к острой гипоксии. Рос физиол журн им ИМ Сеченова 102(11): 1333–1342, [Donina ZA, Baranova EV, Aleksandrova NP (2016) Effects of proinflammatory cytokine interleukin 1β on resistance to acute hypoxia. Russ J Physiol 102 (11): 1333–1342. (In Russ)].
- Donina ZA, Baranova EV, Aleksandrova NP (2021) A comparative assessment of effects of major mediators of acute phase response (IL-1, TNF-α, IL-6) on breathing pattern and survival rate in rats with acute progressive hypoxia. J Evol Biochem Physiol 57(4): 936–944. https://doi.org/10.1134/S0022093021040177
- Gangwar A, Paul S, Ahmad Y, Bhargava K (2020) Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: benefits at high altitude. Scient Rep 10(1): 7899. https://doi.org/10.1038/s41598–020–64848-x
- Huang L, Wu S, Li H, Dang Z, Wu Y, Dang Y (2019) Hypoxic preconditioning relieved ischemic cerebral injury by promoting immunomodulation and microglia polarization after middle cerebral artery occlusion in rats. Brain Res 15: 1723:146388. https://doi.org/10.1016/j.brainres.2019.146388
- Li G, Guan Y, Gu Y, Guo M, Ma W, Shao Q, Liu L, Ji X (2023) Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neurosci Therap 29: 202–217. https://doi.org/10.1111/cns.13996
- Song M, Zwemer C, Whitesall S, D’Alecy L (2007) Acute and conditioned hypoxic tolerance augmented by endothelial nitric oxide synthase inhibition in mice. J Appl Physiol 102(2): 610–615. https://doi.org/10.1152/japplphysicalol.00894
- McGettrick AF, O’Neill LAJ (2020) The role of HIF in immunity and inflammation. Cell Metabol 32(4): 524–536. https://doi.org/10.1016/j.cmet.2020.08.002
- KiersD, Wielockx B, PetersE, van Eijk LT, Gerretsen J, John A, Janssen E, Groeneveld R, Peters M, Damen L, Meneses AM, Krüger A, Langereis JD, Zomer AL, Blackburn MR, Joosten LA, Netea MG, Riksen NP, van der Hoeven JG, Scheffer GJ, Eltzschig HK, Pickkers P, Kox M (2018) Short-term hypoxia dampens inflammation in vivo via enhanced adenosine release and adenosine 2B receptor stimulation. eBioMedicine 33: 144–156. https://doi.org/10.1016/j.ebiom.2018.06.021
- Wang X, Wong K, Ouyang W et al. (2019) Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harbor Perspect Biol 11(2): a028548. https://doi.org/10.1101/cshperspect.a028548
- Santiago A, Madeira M, Boia R, Aires ID Rodrigues-Neves A, Santos P (2020) Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Therap 210: 107513. https://doi.org/10.1016/j.pharmthera.2020.107513
- Zhang T, Yu-Jing L, Ma T (2022) The immunomodulatory function of adenosine in sepsis. Front Immunol 13: 936547. https://doi.org/10.3389/fimmu.2022.936547
- Baze MM, Hunter K, Hayes JP (2011) Chronic hypoxia stimulates an enhanced response to immune challenge without evidence of an energetic tradeoff. J Exp Biol 214: 3255–3268. https://doi.org/10.1242/jeb.054544
- Hams E, Sauners S, Cummins E, O'Connor A, Tambuwala M, Gallagher W, Byrne A, Campos-Torres A, Moynagh P, Jobin C, Taylor C, Fallon P (2011) The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock 36: 295–302. https://doi.org/10.1097/SHK.0b013e318225ad7e
- Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats. Br J Pharmacol 161: 1806–1816. https://doi.org/10.1111/j.1476–5381.2010.01002.x
Supplementary files
