Transcription Factor NF-κB: Role and Significance in the Neuroimmunoendocrine Regulation of Respiratory Function in Normal Conditions and in Lung Pathology
- Autores: Belova Y.I.1,2, Mironova E.S.1,3, Zubareva T.S.1,3, Kvetnoy I.M.1,2, Yablonsky P.K.1,2
-
Afiliações:
- St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation
- St. Petersburg State University
- Research Center “St. Petersburg Institute of Bioregulation and Gerontology”
- Edição: Volume 110, Nº 4 (2024)
- Páginas: 527-546
- Seção: REVIEW
- URL: https://cardiosomatics.ru/0869-8139/article/view/651651
- DOI: https://doi.org/10.31857/S0869813924040029
- EDN: https://elibrary.ru/COMLDV
- ID: 651651
Citar
Resumo
The problem of modern biomedicine is the elucidation of the multicomponent and multilevel mechanism of a single neuroimmunoendocrine regulation of physiological functions, which plays the role of a universal conductor of all life processes. Respiratory diseases lead in the structure of general morbidity among the population and remain one of the most pressing problems of modern healthcare. The spread of lung diseases is facilitated by lifestyle, air pollution, smoking, environment, infections, and genetic predisposition. Various risk factors can contribute to the development of pathologies such as pneumonia, lung cancer, asthma, chronic obstructive pulmonary disease and others. In addition, the rates of these diseases tend to increase every year. In this regard, verification and study of signaling molecules as factors involved in the neuroimmunoendocrine regulation of lung function in normal and pathological conditions, which on the one hand can be considered as biomarkers of disease prognosis, and on the other as potential targets for targeted effective therapy, is an urgent task of modern translational biomedicine. This literature review is devoted to study of the one of the key participants role in the neuroimmunoendocrine regulation of homeostasis – the transcription factor NF-κB in the regulation of respiratory function in health and the pathogenesis of lung diseases. Summarizing information on this topic is extremely important and promising for understanding the molecular mechanisms of the onset and course of diseases, and will also allow us to develop new approaches to targeted personalized therapy for socially significant pathologies: bronchial asthma, lung cancer, acute distress syndrome and COVID-19. A detailed study of the mechanisms of NF-κB activation and its relationship with other signaling pathways will lead to solving the main task of translational biomedicine – the development of innovative methods for the treatment and prevention of human diseases, including pathology of the respiratory system.
Palavras-chave
Texto integral

Sobre autores
Yu. Belova
St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation; St. Petersburg State University
Email: katerina.mironova@gerontology.ru
Rússia, St. Petersburg; St. Petersburg
E. Mironova
St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation; Research Center “St. Petersburg Institute of Bioregulation and Gerontology”
Autor responsável pela correspondência
Email: katerina.mironova@gerontology.ru
Rússia, St. Petersburg; St. Petersburg
T. Zubareva
St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation; Research Center “St. Petersburg Institute of Bioregulation and Gerontology”
Email: katerina.mironova@gerontology.ru
Rússia, St. Petersburg; St. Petersburg
I. Kvetnoy
St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation; St. Petersburg State University
Email: katerina.mironova@gerontology.ru
Rússia, St. Petersburg; St. Petersburg
P. Yablonsky
St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation; St. Petersburg State University
Email: katerina.mironova@gerontology.ru
Rússia, St. Petersburg; St. Petersburg
Bibliografia
- Pearse AGE (1979) The diffuse endocrine system and the implications of the APUD concept. Int Surg 64(2): 5–7.
- Пальцев МА, Кветной ИМ, Полякова ВО, Линькова НС, Костылев АС (2012) Сигнальные молекулы: место и роль в персонифицированной диагностике, лечении и профилактике социально значимых заболеваний. Мол мед 5: 3–8. [Paltsev MA, Kvetnoy IM, Polyakova VO, Linkova NS, Kostylev AS (2012) Signaling molecules: their place and role in the personalized diagnosis, treatment and prevention of socially significant diseases. Mol Мed 5: 3–8. (In Russ)].
- Blalock JE, Smith EM (1985) The immune system: our mobile brain? Immunol Today 6(4): 115–117. https://doi.org/10.1016/0167-5699(85)90070-2
- Пальцев МА, Кветной ИМ (2014) Руководство по нейроиммуноэндокринологии. 3-е изд. М. Шико. [Paltsev MA, Kvetnoy IM (2014) A guide to neuroimmunoendocrinology. 3-e izd. M. Shiko. (In Russ)].
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3): 209–249. https://doi.org/10.3322/caac.21660
- Londhe VA, Nguyen HT, Jeng JM, Li X, Li C, Tiozzo C, Zhu N, Minoo P (2008) NF-κB induces lung maturation during mouse lung morphogenesis. Dev Dyn 237(2): 328–338. https://doi: 10.1002/dvdy.21413
- Davis R, Brown K, Siebenlist U, Staudt L (2001) Constitutive nuclear factor kappa B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194(12): 1861–1874. https://doi.org/10.1084/jem.194.12.1861
- Williams LM, Gilmore ТD (2020) Looking Down on NF-κB. Mol Cell Biol 40(15): 104–120. https://doi.org/10.1128/MCB.00104-20
- Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy A, Gieling R, Chakraborty J, Fox C, Richardson C, Callaghan K, Blair G, Fox N, Lagnado A, Passos J, Moore A, Smith G, Tiniakos D, Mann J, Oakley F, Mann D (2015) NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 6: 6818. https://doi.org/10.1038/ncomms7818
- Mitchell J, Carmody R (2018) NF-κB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol 335: 41–84. https://doi.org/10.1016/bs.ircmb.2017.07.007
- Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51): 6680–6684. https://doi.org/10.1038/sj.onc.1209954
- Zhang L, Wei X, Wang Z, Liu P, Hou Y, Xu Y, Su H, Koci MD, Yin H, Zhang C (2023) NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 42(3): 112185. https://doi.org/10.1016/j.celrep.2023.112185
- Goel S, Oliva R, Jeganathan S, Bader V, Krause LJ, Kriegler S, Stender ID, Christine CW, Nakamura K, Hoffmann JE, Winter R, Tatzelt J, Winklhofer KF (2023) Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling. Life Sci Allian 6(4): e202201607. https://doi.org/10.26508/lsa.202201607
- Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy 5(1): 209. https://doi.org/10.1038/s41392-020-00312-6
- Moorthy A, Savinova O, Ho J, Wang V, Vu D, Ghosh G (2006) The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 25(9): 1945–1956. https://doi.org/10.1038/sj.emboj.7601081
- Hayden M, Ghosh S (2011) NF-κB in immunobiology. Cell Res 21(2): 223–244. https://doi.org/10.1038/cr.2011.13
- Chen L, Greene W (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5: 392–401. https://doi.org/10.1038/nrm1368
- Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693–733. https://doi.org/10.1146/annurev.immunol.021908.132641
- Sun S (2011) Non-canonical NF-κB signaling pathway. Cell Res 21(1): 71–85. https://doi.org/10.1038/cr.2010.177
- Tas SW, Bryant VL, Cook MC (2023) Editorial: Non-canonical NF-κB signaling in immune-mediated inflammatory diseases and malignancies. Front Immunol 14: 1252939. https://doi.org/10.3389/fimmu.2023.1252939
- Xiao G, Harhaj E, Sun S (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7: 401–409. https://doi.org/10.1016/s1097-2765(01)00187-3
- Haga M, Okada M (2022) Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 479(2): 161–183. https://doi.org/10.1042/BCJ20210547
- Dejardin E, Droin N, Delhase M, Haas E, Cao Y, Makris C, Li Z, Karin M, Ware C, Green D (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4): 525–535. https://doi.org/10.1016/s1074-7613(02)00423-5
- Coope H, Atkinson P, Huhse B, Belich M, Janzen J, Holman M, Klaus G, Johnston L, Ley S (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. The EMBO J 21(20): 5375–5385. https://doi.org/10.1093/emboj/cdf542
- Claudio E, Brown K, Park S, Wang H, Siebenlist U (2002) BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 3: 958–965. https://doi.org/10.1038/ni842
- Novack D, Yin L, Hagen-Stapleton A, Schreiber R, Goeddel D, Ross F, Teitelbaum S (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5): 771–781. https://doi.org/10.1084/jem.20030116
- Kok FO, Wang H, Riedlova P, Goodyear CS, Carmody RJ (2021) Defining the structure of the NF-ĸB pathway in human immune cells using quantitative proteomic data. Cell Signal 88: 110154. https://doi.org/10.1016/j.cellsig.2021.110154
- Serasanambati M, Chilakapati SR (2016) Function of nuclear factor kappa B (NF-κB) in human diseases – a review. South Ind J Biol Sci 2 (4): 368–387. https://doi.org/10.22205/sijbs/2016/v2/i4/103443
- Ahn KS, Aggarwal BB (2005) Transcription Factor NFkB A Sensor for Smoke and Stress Signals. Ann N Y Acad Sci 1056: 218–233. https://doi.org/10.1196/annals.1352.026
- Paun A, Claudio E, Siebenlist UK (2021) Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Advanc 5(3): 745–755. https://doi.org/10.1182/bloodadvances.2020002932
- Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheumat Diseases 65(3): 75–82. https://doi.org/10.1136/ard.2006.058438
- Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M (2019) Cellular Senescence: Defining a Path Forward. Cell 179(4): 813–827. https://doi.org/10.1016/j.cell.2019.10.005
- Lopes-Paciencia S, Saint-Germain E, Rowell M, Ruiz A, Kalegari P, Ferbeyre G (2019) The senescence-associated secretory phenotype and its regulation. Cytokine 117: 15–22. https://doi.org/10.1016/j.cyto.2019.01.013
- Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Bio lSci Med Sci 69 Suppl 1: 4–9. https://doi.org/10.1093/gerona/glu057
- Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25(20): 2125–2136. https://doi.org/10.1101/gad.17276711
- Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6): 722–733. https://doi.org/10.1016/j.devcel.2014.11.012
- Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, Tsoory M, Schirmbeck R, Amit I, Geiger H, Krizhanovsky V (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9(1): 5435. https://doi.org/10.1038/s41467-018-07825-3
- Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF (2016) Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30(4): 533–547. https://doi.org/10.1016/j.ccell.2016.09.003
- Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C (2020) Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 42(5): 589–605. https://doi.org/10.1007/s00281-020-00814-z
- Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 22(5-6): 289–303. https://doi.org/10.1038/s41435-021-00126-8
- Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593(13): 1566–1579. https://doi.org/10.1002/1873-3468.13498
- Burtscher J, Burtscher M, Millet GP (2021) The central role of mitochondrial fitness on antiviral defenses: An advocacy for physical activity during the COVID-19 pandemic. Redox Biol 43: 101976. https://doi.org/10.1016/j.redox.2021.101976
- Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JJ, Liu GH (2022) The landscape of aging. Sci China Life Sci 65(12): 2354–2454. https://doi.org/10.1007/s11427-022-2161-3
- Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P (2021) Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging 13(10): 13421–13429. https://doi.org/10.18632/aging.203083
- Mato-Basalo R, Morente-López M, Arntz OJ, van de Loo FAJ, Fafián-Labora J, Arufe MC (2021) Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells. Int J Mol Sci 22(7): 3367. https://doi.org/10.3390/ijms22073367
- Voet S, Prinz M, van Loo G (2018) Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol Med 25(2): 112–123. https://doi.org/10.1016/j.molmed.2018.11.005
- Chiarini A, Armato U, Hu P, Dal Prà I (2020) Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci 21(23): 9036. https://doi.org/10.3390/ijms21239036
- Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, Anderson AM, Tyor WR (2019) CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Front Immunol 10: 480. https://doi.org/10.3389/fimmu.2019.00480
- Gallo M, Campione S, Di Vito V, Fortunati N, Lo Calzo F, Messina E, Ruggeri RM, Faggiano A, Colao AAL (2021) Primary Neuroendocrine Neoplasms of the Breast: Still Open Issues. Front Immunol 11: 610230. https://doi.org/10.3389/fendo.2020.610230
- Raynard C, Ma X, Huna A, Tessier N, Massemin A, Zhu K, Flaman JM, Moulin F, Goehrig D, Medard JJ, Vindrieux D, Treilleux I, Hernandez-Vargas H, Ducreux S, Martin N, Bernard D (2022) NF-κB-dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell 21(7): e13632. https://doi.org/10.1111/acel.13632
- Martin N, Bernard D (2018) Calcium signaling and cellular senescence. Cell Calcium 70: 16–23. https://doi.org/10.1016/j.ceca.2017.04.001
- Huna A, Martin N, Bernard D (2023) The senescence-associated secretory phenotype induces neuroendocrine transdifferentiation. Aging 15(8): 2819–2821. https://doi.org/10.18632/aging.204669
- Pacifico F, Crescenzi E, Leonardi A (2021) Analysis of the Contribution of NF-κB in the Regulation of Chemotherapy-Induced Cell Senescence by Establishing a Tetracycline-Regulated Cell System. Methods Mol Biol 2366: 193–212. https://doi.org/10.1007/978-1-0716-1669-7_12
- Pakkasela J, Ilmarinen P, Honkamäki J, Tuomisto LE, Andersén H, Piirilä P, Hisinger-Mölkänen H, Sovijärvi A, Backman H, Lundbäck B, Rönmark E, Kankaanranta H, Lehtimäki L (2020) Age-specific incidence of allergic and non-allergic asthma. BMC Pulm Med 20(1): 9. https://doi.org/10.1186/s12890-019-1040-2
- Peters U, Dixon AE, Forno E (2018) Obesity and asthma. J Allerg Clin Immunol 141(4): 1169–1179. https://doi.org/10.1016/j.jaci.2018.02.004
- Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, Raymond WW, Lachowicz-Scroggins ME, Di Maio S, Hoffman EA, Castro M, Fain SB, Jarjour NN, Israel E, Levy BD, Erzurum SC, Wenzel SE, Meyers DA, Bleecker ER, Phillips BR, Mauger DT, Gordon ED, Woodruff PG, Peters MC, Fahy JV (2018) National Heart Lung and Blood Institute (NHLBI) Severe Asthma Research Program (SARP). Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128(3): 997–1009. https://doi.org/10.1172/JCI95693
- Lawrence T, Gilroy D, Colville P, Willoughby D (2001) Possible new role for NF-κB in the resolution of inlammation. Nat Med 7: 1291–1297. https://doi.org/10.1038/nm1201-1291
- Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109: S81–S96. https://doi.org/10.1016/s0092-8674(02)00703-1
- Rico-Rosillo G, Vega-Robledo GB (2011) The involvement of NF-κB Transcription factor in asthma. Rev Alerg Mex 58(2): 107–111.
- Abdulamir A, Kadhim H, Hafidh R, Ali M, Faik I, Abubaka F, Abbas K (2009). Severity of asthma: the role of CD25+, CD30+, NF-kappaB, and apoptotic markers. J Invest Allergol Clin Immunol 19(3): 218–224.
- Dudnyk V, Kutsak O (2018) NF-κB level in blood serum of children with bronchial asthma depending on the severity and level of disease control. Sovrem Pediatr 3(91): 8–11. https://doi.org/10.15574/SP.2018.91.8
- Benjamin JT, Plosa EJ, Sucre JM, van der Meer R, Dave S, Gutor S, Nichols DS, Gulleman PM, Jetter CS, Han W, Xin M, Dinella PC, Catanzarite A, Kook S, Dolma K, Lal CV, Gaggar A, Blalock JE, Newcomb DC, Richmond BW, Kropski JA, Young LR, Guttentag SH, Blackwell TS (2021) Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest 131(1): 1–17. https:// doi.org/10.1172/JCI139481
- Haley KJ, Lasky-Su J, Manoli SE, Smith LA, Shahsafaei A, Weiss ST, Tantisira K (2011) RUNX transcription factors: association with pediatric asthma and modulated by maternal smoking. Am J Physiol Lung Cell Mol Physiol 301(5): 693–701. https://doi.org/10.1152/ajplung.00348.2010
- Wilson SJ, Wallin A, Della-Cioppa G, Sandström T, Holgate ST (2001) Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164(6): 1047–1052. https://doi.org/10.1164/ajrccm.164.6.2010045
- Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5): 309–324. https://doi.org/10.1038/nri.2017.142
- Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee J, Hong W, Aggarwal B, Wistuba II (2006) Nuclear factor-κB (nf-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107: 2637–2646. https://doi.org/10.1002/cncr.22315
- Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, Sayyah J, Dennis PA (2005) Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 26(7): 1182–1195. https://doi.org/10.1093/carcin/bgi072
- Pastor M, Nogal A, Molina-Pinelo S, Meléndez R, Salinas A, González De la Peña M, Martín-Juan J, Corral J, García-Carbonero R, Carnero A, Paz-Ares L (2013) Identification of proteomic signatures associated with lung cancer and COPD. J Proteom 89: 227–237. https://doi.org/ 10.1016/j.jprot.2013.04.037
- Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB (2019) MARCKS and Lung Disease. Am J Respir Cell Mol Biol 60(1): 16–27. https://doi.org/10.1165/rcmb.2018-0285TR
- Liu J, Chen SJ, Hsu SW, Zhang J, Li JM, Yang DC, Gu S, Pinkerton KE, Chen CH (2021) MARCKS cooperates with NKAP to activate NF-κB signaling in smoke-related lung cancer. Theranostics 11(9): 4122–4136. https://doi.org/10.7150/thno.53558
- Fara A, Mitrev Z, Rosalia RA, Assas BM (2020) Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol 10(9): 200160. https://doi.org/10.1098/rsob.200160
- TenOever BR (2016) The Evolution of Antiviral Defense Systems. Cell Host Microbe 19(2): 142–149. https://doi.org/10.1016/j.chom.2016.01.006
- Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50: 907–923. https://doi.org/10.1016/j.immuni.2019.03.025
- Nilsson-Payant BE, Uhl S, Grimont A, Doane AS, Cohen P, Patel RS, Higgins CA, Acklin JA, Bram Y, Chandar V, Blanco-Melo D, Panis M, Lim JK, Elemento O, Schwartz RE, Rosenberg BR, Chandwani R, tenOever BR (2021) The NF-κB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication. J Virol 95(23): e0125721. https://doi.org/10.1128/JVI.01257-21
- Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin N, Roche N, Szwebel TA, Merkling SH, Treluyer JM, Veyer D, Mouthon L, Blanc C, Tharaux PL, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kernéis S, Terrier B (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504): 718–724. https://doi.org/10.1126/science.abc6027
- Kouhpayeh H (2022) Clinical features predicting COVID-19 mortality risk. Eur J Transl Myol 32(2): 10268. https://doi.org/10.4081/ejtm.2022.10268
- Schultze JL, Aschenbrenner AC (2021) COVID-19 and the human innate immune system. Cell 184(7): 1671–1692. https://doi.org/10.1016/j.cell.2021.02.029
- Nie Y, Mou L, Long Q, Deng D, Hu R, Cheng J, Wu J (2023) SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Res 328: 199086. https://doi.org/10.1016/j.virusres.2023.199086
- Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR (2020) Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181(5): 1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
- Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, Han Y, Zhang XY, Zhou W, Qiu Y, Zhou X (2020) The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol 17(8): 881–883. https://doi.org/10.1038/s41423-020-0485-9
- Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, Li Q, Jiang C, Zhou Y, Liu S, Ye C, Zhang P, Xing Y, Guo H, Tang W (2020) Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect 81(2): e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021
- Dinnon KH 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, West A, Yount BL Jr, Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS (2020) A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586(7830): 560–566. https://doi.org/10.1038/s41586-020-2708-8
- Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbì L, Girardis M, Tedeschi S, Giannella M, Bartoletti M, Pascale R, Dolci G, Brugioni L, Pietrangelo A, Cossarizza A, Pea F, Clini E, Salvarani C, Massari M, Viale PL, Mussini C (2020) Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2(8): e474–e484. https://doi.org/10.1016/S2665-9913(20)30173-9
- Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154(3 Pt 1): 602–611. https://doi.org/10.1164/ajrccm.154.3.8810593
- Rahman A, Fazal F (2009) Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 11(4): 823–839. https://doi.org/10.1089/ars.2008.2204
- Song D, Ye X, Xu H, Liu SF (2009) Activation of endothelial intrinsic NF-κB pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114(12): 2521–2529. https://doi.org/10.1182/blood-2009-02-205914
- Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, Tang H, Gupta A, Lynn H, Gupta G, Rischard F, Sammani S, Kempf CL, Moreno-Vinasco L, Ahmed M, Camp SM, Wang J, Desai AA, Yuan JX, Garcia JGN (2020) Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. Am J Respir Cell Mol Biol 63(1): 92–103. https://doi.org/10.1165/rcmb.2019-0164OC
- Bime C, Casanova N, Oita RC, Ndukum J, Lynn H, Camp SM, Lussier Y, Abraham I, Carter D, Miller EJ, Mekontso-Dessap A, Downs CA, Garcia JGN (2019) Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care 23(1): 410. https://doi.org/10.1186/s13054-019-2697-x
- Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20(2): 95–112. https://doi.org/10.1038/s41577-019-0215-7
- Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN (2022) eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 12(1): 696. https://doi.org/10.1038/s41598-021-04444-9
- Zhu X, Huang B, Zhao F, Lian J, He L, Zhang Y, Ji L, Zhang J, Yan X, Zeng T, Ma C, Liang Y, Zhang C, Lin J (2023) p38-mediated FOXN3 phosphorylation modulates lung inflammation and injury through the NF-κB signaling pathway. Nucl Acids Res 51(5): 2195–2214. https://doi.org/10.1093/nar/gkad057
- Шпагина ЛА, Котова ОС, Сараскина ЛЕ, Ермакова МА (2018) Особенности клеточно-молекулярных механизмов профессиональной хронической обструктивной болезни легких. Сибирск мед обозр 2 (110): 37–45. [Shpagina LA, Kotova OS, Saraskina LE, Ermakova MA (2018) Features of cellular and molecular mechanisms of occupational chronic obstructive pulmonary disease. Sibirsk Med Obozr 2 (110): 37–45. (In Russ)].
- Дыгай АМ, Скурихин ЕГ, Пан ЭС (2022) Хроническая обструктивная болезнь лёгких: перспективы фармакологической регуляции стволовых клеток в клинике. М. РАН. [Dygay AM, Skurikhin EG, Pan ES (2022) Chronic obstructive pulmonary disease: prospects for pharmacological regulation of stem cells in the clinic. M. RAN. (In Russ)].
- Sidletskaya K, Vitkina T, Denisenko Y (2020) The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 15: 1481–1493. https://doi.org/10.2147/COPD.S249131
- McGrath J, Stampfli M (2018) The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis 10: 2011–2017. https://doi.org/10.21037/jtd.2018.05.63
- Wu Y, Li Z, Dong L, Li W, Wu Y, Wang J, Chen H, Liu H, Li M, Jin C, Huang H, Ying S, Li W, Shen H, Chen Z (2020) Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy16(3): 435–450. https://doi.org/10.1080/15548627.2019.1628536
- Chen Z, Wu Y, Wang P, Wu Y, Li Z, Zhao Y, Zhou J, Zhu C, Cao C, Mao Y, Xu F, Wang B, Cormier S, Ying S, Li W, Shen H (2016) Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy12(2): 297–311. https://doi.org/10.1080/15548627.2015.1124224
Arquivos suplementares
