Methods for assessing the diastolic distensibility of the left ventricle

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The most important property of the myocardium that determines the filling of the left ventricle (LV) of the heart is its distensibility. The simplest method of its assessment is the ratio of pressure and LV volume at the end of the diastole. Active relaxation of the myocardium is determined by the work of calcium pumps, and passive relaxation is determined by sarcomere proteins and, first of all, by connectin – titin. The paper compares 6 calculated indices of LV diastolic stiffness of the heart, compares their stability, variations and correlation coefficients from various parameters of hemodynamics. It is shown that only the diastolic stiffness index No. 4, which takes into account LV stiffness at the beginning and end of diastole, showed a weak dependence on LV, heart rate and other parameters of LV hemodynamics of the heart. Therefore, this index can be used in the future to assess the distensibility of the heart in various pathologies.

Texto integral

Acesso é fechado

Sobre autores

V. Kapelko

Chazov National Medical Research Center of Cardiology, Ministry of Healthcare

Autor responsável pela correspondência
Email: v.lakomkin@yandex.ru
Rússia, Moscow

V. Lakomkin

Chazov National Medical Research Center of Cardiology, Ministry of Healthcare

Email: v.lakomkin@yandex.ru
Rússia, Moscow

А. Abramov

Chazov National Medical Research Center of Cardiology, Ministry of Healthcare

Email: v.lakomkin@yandex.ru
Rússia, Moscow

А. Prosvirnin

Chazov National Medical Research Center of Cardiology, Ministry of Healthcare

Email: v.lakomkin@yandex.ru
Rússia, Moscow

Bibliografia

  1. Lalande S, Mueller PJ, Chung CS (2017) The link between exercise and titin passive stiffness. Exp Physiol 102 (9): 1055–1066. https://doi.org/10.1113/EP086275
  2. Emig R, Zgierski-Johnston CM, Timmermann V, Taberner A, Nash MP, Kohl P, Peyronnet R (2021) Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 13(5): 587–610. https://doi.org/10.1007/s12551-021-00838-1
  3. Liu W, Wang Z (2019) Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering (Basel) 7(1): 2. https://doi.org/10.3390/bioengineering7010002
  4. Lakomkin VL, Abramov AA, Lukoshkova EV, Prosvirnin AV, Kapelko VI (2022) Hemodynamics and cardiac contractile function in type 1 diabetes. Kardiologiia 62(8): 33–37. https://doi.org/10.18087/cardio.2022.8.n1967. PMID: 36066985
  5. Weiss JL, Frederiksen JW, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58: 751–760. https://doi.org/10.1172/JCI108522
  6. Gillebert TC, Lew WY (1991) Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol 261(3 Pt 2): H805–H813. https://doi.org/10.1152/ajpheart.1991.261.3.H805
  7. Yano M, Kohno M, Kobayashi S, Obayashi M, Seki K, Ohkusa T, Miura T, Fujii T, Matsuzaki M (2001) Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am J Physiol Heart Circ Physiol 280(4): H1846–H1852. https://doi.org/10.1152/ajpheart.2001.280.4.H1846
  8. Granzier H, Labeit S (2002) Cardiac titin: an adjustable multi-functional spring. J Physiol 541 (Pt 2): 335–342. https://doi.org/10.1113/jphysiol.2001.014381
  9. Li N, Hang W, Shu H, Zhou N (2022) RBM20, Therapeutic Target to Alleviate Myocardial Stiffness via Titin Isoforms Switching in HFpEF. Front Cardiovasc Med 9: 928244. https://doi.org/10.3389/fcvm.2022.928244
  10. Loescher CM, Hobbach AJ, Linke WA (2022) Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res 118(14): 2903–2918. https://doi.org/10.1093/cvr/cvab328
  11. Tharp C, Mestroni L, Taylor M (2020) Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 9(9): 2770. https://doi.org/10.3390/jcm9092770
  12. Franssen C, González MA (2016) The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth Heart J 24(4): 259–267. https://doi.org/10.1007/s12471-016-0812-z
  13. Капелько ВИ (2022) Роль титина в сократительной функции сердца. Успехи физиол наук 53(2): 1–15. [Kapelko VI (2022) The role of sarcomeric protein titin in the pump function of the heart. Uspehi fiziol nauk 53(2): 1–15. (In Russ)]. https://doi.org/10.31857/S0301179822020059
  14. Chirinos JA, Rietzschel ER, Shiva-Kumar P, De Buyzere ML, Zamani P, Claessens T, Geraci S, Konda P, De Bacquer D, Akers SR, Gillebert TC, Segers P (2014) Effective arterial elastance is insensitive to pulsatile arterial load. Hypertension 64(5): 1022–1031. https://doi.org/10.1161/HYPERTENSIONAHA.114.03696
  15. Weber T (2020) The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. Int J Heart Fail 2(4): 209–230. https://doi.org/10.36628/ijhf.2020.0029
  16. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68(1): 50–58. https://doi.org/10.1161/01.cir.68.1.50
  17. Solomon SB, Nikolic SD, Frater RW, Yellin EL (1999) Contraction-relaxation coupling: determination of the onset of diastole. Am J Physiol 277(1): H23–H27. https://doi.org/10.1152/ajpheart.1999.277.1.H23
  18. Sathyanarayanan SP, Oberoi M, Shaukat MHS, Stys T, Stys A (2022) Heart Failure with Preserved Ejection Fraction: Concise Review. SD Med 75(11): 513–517.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The ratio of LV volume and pressure in it (lower curve) during diastole, as well as the ratio of LV volume and calculated diastolic elasticity index No. 5 (IDU, upper curve) during diastole. In the initial (1) and final (3) segments of the curve, the IMU is constant, and in the middle part (2) the index increases.

Baixar (98KB)
3. Fig. 2. Correlation of index of diastolic elasticity (IDS) No. 4 with relaxation time constant tau (ms).

Baixar (49KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024