The Contribution of BK Channels to Ischemic Reperfusion Changes in Cerebral Blood Flow

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Ischemic/reperfusion (I/R) damage of cerebral vessels is a complex dynamic process leading to hypoxic brain damage. To improve the outcome and treatment of the effects of I/R, an understanding of the molecular mechanisms of changes occurring in the cerebral vascular bed after recovery of blood flow is required in order to identify therapeutic intracellular targets. High-conductivity calcium-dependent potassium channels (BK) involved in the vasodilator reaction of cerebral vessels and highly sensitive to changes in oxygen levels can be considered as such targets. The work investigated the change in the contribution of BK channels to the rats pial arteries dilation after I/R. Using the method of in vivo vascular imaging in I/R and sham-operated rats, the number and degree of dilatation reactions in response to acetylcholine chloride (ACh, 10-7 M, 8 min) and exogenous hydrogen sulfide (H2S) donor sodium hydrosulfide (30 µM, 2 min) were compared before and after the use of the BK channel blocker tetraethylammonium chloride (2 mM, 5 min). It was found that I/R inhibit the dilatatory reaction. Changes in ACh-induced vasodilation persist for 21 days after I/R. Changes of H2S-mediated processes are noted only in the first 14 days and depend on the vessel size. These changes may be based on a gradually developing decrease in the contribution of BK channels to vasodilation, mainly expressed in large pial arteries. The decrease in the contribution of BK channels to dilation is most pronounced after 14 days and persists for 21 days after I/R.

Texto integral

Acesso é fechado

Sobre autores

O. Gorshkova

Pavlov Institute of Physiology of the RAS

Autor responsável pela correspondência
Email: o_gorshkova@inbox.ru
Rússia, Saint Petersburg

Bibliografia

  1. Hong WM, Xie YW, Zhao MY, Yu TH, Wang LN, Xu WY, Gao S, Cai HB, Guo Y, Zhang F (2023) Vasoprotective effects of hyperoside against cerebral ischemia/reperfusion injury in rats: Activation of large-conductance Ca2+-activated K+ Channels. Neural Plast 2023: 5545205. https://doi.org/10.1155/2023/5545205
  2. Gorshkova OP, Shuvaeva VN (2019) Dynamics of postischemic changes in the microcirculation in the rat cerebral cortex. Neurosci Behav Physiol 49(5): 569–572. https://doi.org/10.1007/s11055-019-00771-7
  3. Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O (2019) Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci 20(20): 5034. https://doi.org/10.3390/ijms20205034
  4. Zhang ML, Peng W, Ni JQ, Chen G (2021) Recent advances in the protective role of hydrogen sulfide in myocardial ischemia/reperfusion injury: A narrative review. Med Gas Res 11(2): 83–87. https://doi.org/10.4103/2045-9912.311499
  5. Tano JY, Gollasch M (2014) Calcium-activated potassium channels in ischemia reperfusion: A brief update. Front Physiol 5: 381. https://doi.org/10.3389/fphys.2014.00381
  6. Hu XQ, Zhang L (2012) Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 17(17-18): 974–987. https://doi.org/10.1016/j.drudis.2012.04.002
  7. Si R, Zhang Q, Cabrera JTO, Zheng Q, Tsuji-Hosokawa A, Watanabe M, Hosokawa S, Xiong M, Jain PP, Ashton AW, Yuan JX, Wang J, Makino A (2020) Chronic hypoxia decreases endothelial connexin 40, attenuates endothelium-dependent hyperpolarization-mediated relaxation in small distal pulmonary arteries, and leads to pulmonary hypertension. J Am Heart Assoc 9(24): e018327. https://doi.org/10.1161/JAHA.120.018327
  8. Shuvaeva VN, Gorshkova OP (2022) Сontribution of IK Ca channels to dilation of pial arteries in young rats after ischemia/reperfusion. J Evol Biochem Physiol 58(6): 1926–1936. https://doi.org/10.1134/S0022093022060217
  9. Liu XY, Qian LL, Wang RX (2022) Hydrogen sulfide-induced vasodilation: The involvement of vascular potassium channels. Front Pharmacol 13: 911704. https://doi.org/10.3389/fphar.2022.911704
  10. Echeverria F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R (2024) Large conductance voltage-and calcium-activated K+ (BK) channel in health and disease. Front Pharmacol 15: 1373507. https://doi.org/10.3389/fphar.2024.1373507
  11. Michelucci A, Sforna L, Franciolini F, Catacuzzeno L (2023) Hypoxia, ion channels and glioblastoma malignancy. Biomolecules 13(12): 1742. https://doi.org/10.3390/biom13121742
  12. Ochoa SV, Otero L, Aristizabal-Pachon AF, Hinostroza F, Carvacho I, Torres YP (2021) Hypoxic regulation of the large-conductance, calcium and voltage-activated potassium channel, BK. Front Physiol 12: 780206. https://doi.org/10.3389/fphys.2021.780206
  13. Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP, Gawaz M, Krieg T, Szewczyk A, Nikolaev VO, Ruth P, Lukowski R (2017) cGMP-Elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation 136(24): 2337–2355. https://doi.org/10.1161/CIRCULATIONAHA.117.028723
  14. Sancho M, Kyle BD (2021) The large-conductance, calcium-activated potassium channel: A big key regulator of cell physiology. Front Physiol 12: 750615. https://doi.org/10.3389/fphys.2021.750615
  15. Riddle MA, Walker BR (2011) Regulation of endothelial BK channels by heme oxygenase-derived carbon monoxide and caveolin-1. Am J Physiol Cell Physiol 303(1): C92–C101. https://doi.org/10.1152/ajpcell.00356.2011
  16. Kyle BD, Mishra RC, Braun AP (2017) The augmentation of BK channel activity by nitric oxide signaling in rat cerebral arteries involves co-localized regulatory elements. J Cereb Blood Flow Metab 37(12): 3759–3773. https://doi.org/10.1177/0271678X17691291
  17. Gagov H, Gribkova IV, Serebryakov VN, Schubert R (2022) Sodium nitroprusside-induced activation of vascular smooth muscle BK channels is mediated by PKG rather than by a direct interaction with NO. Int J Mol Sci 23(5): 2798. https://doi.org/10.3390/ijms23052798
  18. Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L (2021) Endothelial dysfunction driven by hypoxia-the influence of oxygen deficiency on NO bioavailability. Biomolecules 11(7): 982. https://doi.org/10.3390/biom11070982
  19. Zheng L, Ding J, Wang J, Zhou C, Zhang W (2016) Effects and mechanism of action of inducible nitric oxide synthase on apoptosis in a rat model of cerebral ischemia-reperfusion injury. Anat Rec (Hoboken) 299(2): 246–255. https://doi.org/10.1002/ar.23295
  20. Bełtowski J, Jamroz-Wiśniewska A (2014) Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 19(12): 21183-21199. https://doi.org/10.3390/molecules191221183
  21. Olson KR (2021) A case for hydrogen sulfide metabolism as an oxygen sensing mechanism. Antioxidants (Basel) 10(11): 1650. https://doi.org/10.3390/antiox10111650
  22. Islam KN, Polhemus DJ, Donnarumma E, Brewster LP, Lefer DJ (2015) Hydrogen sulfide levels and nuclear factor-erythroid 2-related factor 2 (NRF2) activity are attenuated in the setting of critical limb ischemia (CLI). J Am Heart Assoc 14: e001986. https://doi.org/10.1161/JAHA.115.001986
  23. Shen Y, Shen Z, Luo S, Guo W, Zhu YZ (2015) The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxid Med Cell Longev 2015: 925167. https://doi.org/10.1155/2015/925167
  24. Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG (2023) Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 20(2): 109–125. https://doi.org/10.1038/s41569-022-00741-6
  25. Wu D, Hu Q, Zhu D (2018) An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxid Med Cell Longev 2018: 4579140. https://doi.org/10.1155/2018/4579140
  26. Koukalova L, Chmelova M, Amlerova Z, Vargova L (2024) Out of the core: The impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 18: 1336886. https://doi.org/10.3389/fncel.2024.1336886
  27. Pluta R, Januszewski S, Czuczwar SJ (2021) Neuroinflammation in post-ischemic neurodegeneration of the brain: friend, foe, or both? Int J Mol Sci 22(9): 4405. https://doi.org/10.3390/ijms22094405
  28. Соколова ИБ, Горшкова ОП, Лобов ГИ (2019) Роль индуцибельной NO-синтазы в развитии церебральной гиперемии после ишемии/реперфузии. Рос физиол журн им ИМ Сеченова 105(12): 1–9. [Sokolova IB, Gorshkova OP, Lobov GI (2019) The role of inducible NO synthase in the development of cerebral hyperemia after ischemia/reperfusion. Russ J Physiol 105(12): 1–9. (In Russ)]. https://doi.org/10.1134/S0869813919120100
  29. Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA (2021) Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 9(1): 12. https://doi.org/10.1186/s40478-020-01108-z
  30. Gorshkova OP (2021) Age-Related changes in the role of potassium channels in acetylcholine-induced dilation of pial arteries in normotensive and spontaneously hypertensive rats. J Evol Biochem Phys 57(1): 55–65. https://doi.org/10.1134/S0022093021010051
  31. Yuan S, Shen X, Kevil CG (2017) Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxid Redox Signal 27(10): 634-653. https://doi.org/10.1089/ars.2017.7096
  32. Naik JS, Walker BR (2018) Endothelial-dependent dilation following chronic hypoxia involves TRPV4-mediated activation of endothelial BK channels. Pflugers Arch 470(4): 633–648. https://doi.org/10.1007/s00424-018-2112-5
  33. Hughes JM, Riddle MA, Paffett ML, Gonzalez Bosc LV, Walker BR (2010) Novel role of endothelial BKCa channels in altered vasoreactivity following hypoxia. Am J Physiol Heart Circ Physiol 299(5): H1439–H1450. https://doi.org/10.1152/ajpheart.00124.2010
  34. Behringer EJ, Hakim MA (2019) Functional interaction among KCa and TRP channels for cardiovascular physiology: modern perspectives on aging and chronic disease. Int J Mol Sci 20(6): 1380. https://doi.org/10.3390/ijms20061380
  35. Lv B, Chen S, Tang C, Jin H, Du J, Huang Y (2020) Hydrogen sulfide and vascular regulation – an update. J Adv Res 27: 85–97. https://doi.org/10.1016/j.jare.2020.05.007
  36. Jackson-Weaver O, Osmond JM, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL (2015) Intermittent hypoxia in rats reduces activation of Ca2+ sparks in mesenteric arteries. Am J Physiol Heart Circ Physiol 309(11): H1915–H1922. https://doi.org/10.1152/ajpheart.00179.2015
  37. Peng W, Hoidal JR, Karwande SV, Farrukh IS (1997) Effect of chronic hypoxia on K+ channels: regulation in human pulmonary vascular smooth muscle cells. Am J Physiol 272(4 Pt 1): C1271–C1278. https://doi.org/10.1152/ajpcell.1997.272.4.C1271

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Image of a section of the pial vascular network in the programme for measuring vessel diameter: (a) - original image; (b) - image after processing in the programme. Arrows indicate: 1 - pial artery; 2 - pial vein; 3 - mark for diameter measurement.

Baixar (534KB)
3. Fig. 2. Number of arterial dilatations in ischaemic rats (I/R) at different intervals of the postischaemic period. Comparison with values in falsely operated rats (SO); *p < 0.05; **p < 0.01.

Baixar (219KB)
4. Fig. 3. Change in the constrictor response to TEA exposure after I/R: (a) - number of constrictions (% of the total number of arteries studied); (b) - amplitude of constriction (% relative to the artery diameter before ACh or NaHS exposure). Differences are significant with respect to the corresponding values in falsely operated rats (SO); *p < 0.05; ***p < 0.0001.

Baixar (248KB)
5. Fig. 4. Effect of VC channel blockade on the dilatatory response in response to ACh and NaHS in LO rats (SO) and ischaemic rats (I/R): (a, b) - number of dilatations (% of the total number of arteries studied); (c, d) - dilatation amplitude (% relative to the artery diameter before ACh or NaHS). Line - response to ACh or NaHS administration without TEA, taken as 100%. * - differences are statistically significant compared with falsely operated rats (SO); # - differences are significant with respect to values obtained without TEA application; #*p < 0.05, ## p < 0.01, ###p < 0.0001.

Baixar (388KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025