Search for Inhibitors of Ionotropic Glutamate Receptors in a Series of 2,3,4,5-tetrahydro[1,3]diazepino[1,2-a]benzimidazole Derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present work, 14 new diazepinebenzimidazole derivatives (DAB series) were screened for inhibitory activity against NMDA- and Ca2+-impermeable (CI) AMPA-receptors. Experiments were conducted on isolated Wistar rat neurons; pyramidal neurons of the CA1 zone of the hippocampus were used to study NMDA- and CI-AMPA-receptors. Cell isolation was performed by vibrodissociation, and currents were recorded by whole-cell patch-clamp method. All the studied compounds at a concentration of 100 μM inhibited NMDA-receptors (≥30%), while CI-AMPA receptors currents were inhibited by only four compounds: DAB-8, DAB-12, DAB-19, and DAB-32. DAB-8, DAB-12 and DAB-32 have a 4-substituted phenacyl group at the nitrogen atom N11 with an electronegative fluorine atom in the para position (DAB-8 and DAB-32) or without it (DAB-12), whereas the most active compound DAB-19 has a 4-tert-butyl-benzyl group at atom N11 with a bulky tert-butyl substituent in the para position. The most active of them were DAB-12, DAB-19, and DAB-32, which were studied further for their IC50 values. Compound DAB-19 demonstrated the most pronounced activity against both NMDA- and CI-AMPA-receptors: IC50 values were 11,0 ± 1,6 µM and 15,4 ± 1,4 µM, respectively. Such an ability to inhibit both NMDA- and CI-AMPA-receptors at such concentrations is quite remarkable. Based on previous data on the neuropsychotropic effects of DAB-19, we put forward hypothesis about its possible anticonvulsant activity, which was confirmed in the "Pentylenetetrazol Seizure" test. The identification of DAB-19 as a combined antagonist of NMDA- and CI-AMPA-receptors is an important achievement for the further development of effective anticonvulsants.

Full Text

Restricted Access

About the authors

M. Yu. Dron

Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Author for correspondence.
Email: neuro.mike@yahoo.com
Russian Federation, Saint Petersburg

D. V. Maltsev

Volgograd State Medical University

Email: neuro.mike@yahoo.com
Russian Federation, Volgograd

A. A. Spasov

Volgograd State Medical University

Email: neuro.mike@yahoo.com
Russian Federation, Volgograd

L. N. Divaeva

Southern Federal University

Email: neuro.mike@yahoo.com
Russian Federation, Rostov-on-Don

V. S. Sochnev

Southern Federal University

Email: neuro.mike@yahoo.com
Russian Federation, Rostov-on-Don

A. S. Morkovnik

Southern Federal University

Email: neuro.mike@yahoo.com
Russian Federation, Rostov-on-Don

O. I. Barygin

Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: neuro.mike@yahoo.com
Russian Federation, Saint Petersburg

References

  1. Collingridge G, Singer W (1990) Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11(7):290–296. https://doi.org/10.1016/0165-6147(90)90011-v
  2. Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 98(6):1080–1098. https://doi.org/ 10.1016/j.neuron.2018.05.018
  3. Fleming J, England P (2010) Developing a complete pharmacology for AMPA receptors: A perspective on subtype-selective ligands. Bioorganic & Med Chem 18(4): 1381–1387. https://doi.org/10.1016/j.bmc.2009.12.072
  4. Washburn M, Numberger M, Zhang S, Dingledine R (1997) Differential dependence on GluR2 expression of three characteristic features of AMPA receptors. J Neurosci 17(24):9393–9406. https://doi.org/10.1523/JNEUROSCI.17-24-09393.1997
  5. Cull‐Candy S, Farrant M (2021) Ca2+‐permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 599(10):2655–2671. https://doi.org/10.1113/JP279029
  6. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950): 462–465. https://doi.org/10.1038/307462a0
  7. Wyllie D, Béhé P, Nassar M, Schoepfer R (1996) Single-channel currents from recombinant NM DANRla/NR2D receptors expressed in Xenopus oocytes. Proc Royal Soc Lond Ser B: Biol Sci 263(1373):1079–1086. https://doi.org/10.1098/rspb.1996.0159
  8. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Europ J Physiol 460(2):525–542. https://doi.org/10.1007/s00424-010-0809-1
  9. Zanos P, Gould T (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatr 23(4):801–811. https://doi.org/10.1038/mp.2017.255
  10. Kotermanski S, Wood J, Johnson J (2009). Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol 587(19): 4589–4604. https://doi.org/10.1113/jphysiol.2009.176297
  11. Hanada T, Hashizume Y, Tokuhara N, Takenaka O, Kohmura N, Ogasawara A, Hatakeyama S, Ohgoh M, Ueno M, Nishizawa Y (2011) Perampanel: A novel, orally active, noncompetitive AMPA‐receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52(7): 1331–1340. https://doi.org/10.1111/j.1528-1167.2011.03109.x
  12. Sun L, Chiu D, Kowal D, Simon R, Smeyne M, Zukin R, Olney J, Baudy R, Lin S (2004) Characterization of Two Novel N-Methyl-D-aspartate Antagonists: EAA-090 (2-[8, 9-Dioxo-2, 6-diazabicyclo [5.2. 0] non-1 (7)-en2-yl] ethylphosphonic Acid) and EAB-318 (R-α-Amino-5-chloro-1-(phosphonomethyl)-1H-benzimidazole-2-propanoic Acid Hydrochloride). J Pharmacol Exp Therap 310(2):563–570. https://doi.org/10.1124/jpet.104.066092
  13. Wu A, Wang C, Niu L (2014) Mechanism of inhibition of the GluA1 AMPA receptor channel opening by the 2, 3-benzodiazepine compound GYKI 52466 and a N-methyl-carbamoyl derivative. Biochemistry 53(18): 3033–3041. https://doi.org/10.1021/bi5002079
  14. Qneibi M, Hamed O, Jaradat N, Hawash M, Al-Kerm R, Al-Kerm R, Sobuh S, Tarazi S (2021) The AMPA receptor biophysical gating properties and binding site: Focus on novel curcumin-based diazepines as non-competitive antagonists. Bioorganic Chem 116:105406. https://doi.org/10.1016/j.bioorg.2021.105406
  15. Vorobjev V (1991) Vibrodissociation of sliced mammalian nervous tissue. J Neurosci Meth 38 (2–3):145–150. https://doi.org/10.1016/0165-0270(91)90164-U
  16. Chen Q, He S, Hu X, Yu J, Zhou Y, Zheng J, Zhang S, Zhang C, Duan W, Xiong, Z (2007) Differential roles of NR2A-and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci 27(3):542–552. https://doi.org/10.1523/JNEUROSCI.3607-06.2007
  17. Buldakova S, Vorobjev V, Sharonova I, Samoilova M, Magazanik L (1999) Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IEM-1460. Brain Res 846(1): 52–58. https://doi.org/10.1016/S0006-8993(99)01970-8
  18. Жмуренко Л, Воронина Т, Литвинова С, Неробкова Л, Гайдуков И, Мокров Г, Гудашева Т (2018) Синтез и противосудорожная активность производных оксимов 3-и 4-бензоилпиридинов. Хим-фарм журн 52(1):19–28. [Zhmurenko L, Voronina T, Litvinova S, Nerobkova L, Gaidukov I, Mokrov G, Gudasheva T (2018) Synthesis and anticonvulsant activity of 3- and 4-benzoylpyridine oxime derivatives. Pharmaceut Chem J 52(1):19–28. (In Russ)]. https://doi.org/10.30906/0023-1134-2018-52-1-19-28
  19. Воронина Т, Неробкова Л (2012) Методические указания по изучению противосудорожной активности фармакологических веществ. Руководство по проведению доклинических исследований лекарственных средств, часть 1 235–250. [Voronina T, Nerobkova L (2012) Metodicheskie ukazaniya po izucheniyu protivosudorozhnoj aktivnosti farmakologicheskih veshchestv. Ruk Proveden Doklinich Issl Lek Sredstv 235–250. (In Russ)].
  20. Shimada T, Yamagata K (2018) Pentylenetetrazole-induced kindling mouse model. Journal of visualized experiments: JoVE 136:56573. https://doi.org/10.3791/56573
  21. Dhaliwal J, Rosani A, Saadabadi A (2023) Diazepam. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing PMID: 30725707
  22. Antonov S, Johnson J, Lukomskaya N, Potapyeva N, Gmiro V, Magazanik L (1995) Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol 47(3):558–567.
  23. Bolshakov K, Kim K, Potapjeva N, Gmiro V, Tikhonov D, Usherwood P, Mellor I, Magazanik L (2005) Design of antagonists for NMDA and AMPA receptors. Neuropharmacology 49(2):144–155. https://doi.org/10.1016/j.neuropharm.2005.02.007
  24. Barygin O (2016) Inhibition of calcium-permeable and calcium-impermeable AMPA receptors by perampanel in rat brain neurons. Neurosci Lett 633:146–151. https://doi.org/10.1016/j.neulet.2016.09.028
  25. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181. https://doi.org/10.1016/S0896-6273(00)00094-5
  26. Таран А, Мальцев Д, Яковлев Д, Караваева Т, Ткаченко Ю, Диваева Л, Морковник А, Кузьменко Т (2017) Изучение анксиолитической активности в ряду новых производных диазепинобензимидазола на установке «Приподнятый крестообразный лабиринт». Волгоградский научно-медицинский журнал 1:24–26. [Taran A, Maltsev D, Yakovlev D, Karavaeva T, Tkachenko Y, Divaeva L, Morkovnik A, Kuzmenko T (2017) A study of anxiolytic activity of new diazepinobenzimidazoles in the elevated plus maze test. Volgograd Sci Med J 1:24–26. (In Russ)].
  27. Спасов А, Диваева Л, Мальцев Д, Кузьменко Т, Морковник А, Мирошников М, Таран А, Золотова Е (2018) Анксиолитический потенциал нового ряда производных диазепинобензимидазола. Вестн Волгоград гос мед ун-та 3(67):19–23. [Spasov A, Divaeva L, Maltsev D, Kuzmenko T, Morkovnik A, Miroshnikov M, Taran A, Zolotova E (2018) The anxiolytic potential of a new series of diazepinobenzimidazole derivatives. J Volgograd State Med Univers 15(3):19–23. (In Russ)]. https://doi.org/10.19163/1994-9480-2018-3(67)-19-23
  28. Maltsev D, Spasov A, Miroshnikov M, Skripka M, Divaeva L (2020) Influence of Diazepino [1, 2-a] benzimidazole derivative (DAB-19) on behavioral aspects of animals. Res Res Pharmacol 6(3):9–14. https://doi.org/10.3897/rrpharmacology.6.55142
  29. Спасов А, Мальцев Д, Мирошников М, Таран А, Нурмагомедова Б, Скрипка М, Кузьменко Т, Морковник А, Диваева Л (2020) Антидепрессивная активность и потенциальные механизмы действия производного диазепинобензимидазола ДАБ-19. Экспер клин фармак 83(4):31–36. [Spasov A, Maltsev D, Miroshnikov M, Taran A, Nurmagamedova B, Skripka M, Kuzmenko T, Morkovnik A, Divaeva L (2020) The antidepressant activity of diazepinobenbenzimidazole derivative DAB-19 and its potential mechanisms of action. Exp Clin Pharmacol 83(4):31–36. (In Russ)]. https://doi.org/10.30906/0869-2092-2020-83-4-31-36
  30. Мирошников М, Мальцев Д, Спасов А, Таран А, Скрипка М, Суркова Е, Гонтарева А, Диваева Л, Морковник А (2020) Анксиолитическая активность нового производного диазепино [1, 2-a] бензимидазола соединения ДАБ-19. Экспер клин фармак 83(10):3–8. [Miroshnikov M, Maltsev D, Spasov A, Taran A, Skripka M, Surkova E, Gontareva A, Divaeva L, Morkovnik A (2020) The Anxiolytic Activity of a New Derivative of Diazepinobenzimidazole (DAB-19). Exp Clin Pharmacol 83(10):3–8. (In Russ)]. https://doi.org/10.30906/0869-2092-2020-83-10-3-8
  31. Мальцев Д, Таран А, Скрипка М, Мирошников М, Диваева Л, Кузьменко Т, Морковник А (2023) Диазепинобензимидазолы – новый класс для поиска соединений с акнсиолитической активностью. Экспер клин фармак 86(11s):101. [Maltsev D, Taran A, Skripka M, Miroshnikov M, Divaeva L, Kuzmenko T, Morkovnik A (2023) Diazepinobenzimidazoles – a new class for searching for compounds with axiniolytic activity. Exp Clin Pharmacol 86(11s):101. (In Russ)]. https://doi.org/10.30906/ekf-2023-86s-101a
  32. Kotloski R, Gidal B (2022) Rescue treatments for seizure clusters. Neurologic Clinics 40(4):927–937. https://doi.org/10.1016/j.ncl.2022.03.016
  33. Rogawski M (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurologica Scandinavica 127:9–18. https://doi.org/10.1111/ane.12099
  34. Sivakumar S, Ghasemi M, Schachter S (2022) Targeting NMDA receptor complex in management of epilepsy. Pharmaceuticals 15(10):1297. https://doi.org/10.3390/ph15101297

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of the investigated N11-substituted derivatives of 2,3,4,5-tetrahydro[1,3]diazepino[1,2-a]benzimidazole. The compounds were used in the form of hydroiodide (DAB-1), hydrobromides (DAB-7, DAB-8, DAB-12, DAB-19, DAB-32), hydrochlorides (DAB 40, DAB-41), dihydrochlorides (DAB-20, DAB-21, DAB-22).

Download (334KB)
3. Fig. 2. Electrophysiological characterisation of the activities of the compounds evaluated in the screening phase: (a) - DAB-8 at a concentration of 100 μM causes inhibition of 50% of the integrin current of NMDA receptors expressed on CA1-zone hippocampal pyramidal neurons; (b) - DAB-40 at a concentration of 100 μM shows marked inhibitory activity against NMDA receptors; (c) - DAB-8 shows inhibitory activity of KN-AMPA-receptors comparable to that of this compound on NMDA-receptors; (d) - DAB-22 is a low-active inhibitor of KN-AMPA-receptors of pyramidal neurons of CA1-zone of hippocampus.

Download (398KB)
4. Fig. 3. Electrophysiological description of the action of the most active diazepinobenzimidazole derivatives on NMDA- and KN-AMPA-receptors: (a) - inhibition of NMDA-receptors by the compound DAB-19 at different concentrations; (b) - concentration dependence curves describing the action of DAB-12, DAB-19 and DAB-32 on NMDA-receptors; (c) - concentration dependence of inhibition of KN-AMPA-receptors by the compound DAB-19; (d) - concentration dependence of inhibition of KN-AMPA-receptors by diazepinobenzimidazoles DAB-12, DAB-19 and DAB-32.

Download (491KB)

Copyright (c) 2025 Russian Academy of Sciences