Numerical Analysis of Rarefied Gas Flow through a Periodic System of Channels

Cover Page

Cite item

Full Text

Abstract

Rarefied gas flows through a planar periodic system of rectangular channels (membrane) are analyzed in a wide range of Knudsen numbers. The problem is studied based on the numerical solution of the kinetic equation with the Shakhov -model collision integral and the Navier-Stokes equations of the compressible medium. The main attention is paid to the calculation of the mass flow rate as a function of the permeability, the relative channel length, and the rarefaction parameter.

About the authors

I. V Voronich

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: voronich.iv@mipt.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia

V. A Titarev

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: vladimir.titarev@frccsc.ru
Moscow, Russia; Dolgoprudny, Moscow Region, Russia

A. V Kudriashov

Moscow Institute of Physics and Technology

Email: kudriashov.av@mipt.ru
Dolgoprudny, Moscow Region, Russia

References

  1. Dou H., Xu M., Wang B., Zhang Z., Wen G., Zheng Y., Luo D., Zhao L., Yu A., Zhang L., Jiang Z., Chen Z. Microporous framework membranes for precise molecule/ion separations // Chemical Society Reviews. 2021. V. 50. P. 986–1029.
  2. Taassob A., Bordbar A., Kheirandish S., Zarnaghsh A., Kamali R., Rana A.S. A review of rarefied gas flow in irregular micro/nanochannels // Journal of Micromechanics and Microengineering. 2021. V. 31. P. 113002.
  3. Wu L., Ho M., Germanou L., Gu X., Liu C., Xu K., Zhang Y. On the apparent permeability of porous media in rarefied gas flows // Journal of Fluid Mechanics. 2017. V. 822. P. 398–417.
  4. Memisoglu G., Gulbahar B., Fernandez Bello R. Preparation and characterization of freely-suspended graphene nanomechanical membrane devices with quantum dots for point-of-care applications // Micromachines. 2020. V. 11. No. 1. P. 104.
  5. Tina B.S., Rohith S., Seena V. Fabrication and electromechanical characterization of silicon nanomechanical membrane flexure mems sensor for gas sensing applications // IEEE Sensors Journal. 2024. V. 24. No. 5. P. 5440–5447.
  6. Popov S.P., Tcheremissine F.G. Subsonic rarefied gas flow over a rack of flat transverse plates // Journal of Applied Mechanics and Technical Physics. 2008. V. 49. No. 1. P. 46–52.
  7. Plotnikov M.Yu. Hydrogen dissociation in rarefied gas flow through a wire obstacle // J. Appl. Mech. and Technical Physics. 2018. V. 59. No. 5. P. 794–800.
  8. Шахов Е.М. Об обобщении релаксационного кинетического уравнения Крука // Изв. АН СССР. МЖГ. 1968. №5. C. 142–145.
  9. Шарипов Ф.М., Селезнев В.Д. Движение разреженных газов в каналах и микроканалах. Екатеринбург. УРО РАН, 2008.
  10. Varoutis S., Valougeorgis D., Sharipov F. Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios // J. Vac. Sci. Technol. A. 2009. V. 27. No. 6. P. 1377–1391.
  11. Sharipov F., Kozak D.V. Rarefied gas flow through a thin slit into vacuum simulated by the Monte Carlo method over the whole range of the Knudsen number // J. Vac. Sci. Technol. A. 2009. V. 27. P. 479.
  12. Titarev V.A., Shakhov E.M. Computational study of a rarefied gas flow through a long circular pipe into vacuum // Vacuum, Special Issue “Vacuum Gas Dynamics: Theory, experiments and practical applications”. 2012. V. 86. No. 11. P. 1709–1716.
  13. Titarev V.A. Rarefied gas flow in a planar channel caused by arbitrary pressure and temperature drops // International Journal of Heat and Mass Transfer. 2012. V. 55. No. 21–22. P. 5916–5930.
  14. Pantazis S., Valougeorgis D. Rarefied gas flow through a cylindrical tube due to a small pressure difference // Eur. J. Mech.-B/Fluids. 2013. V. 38. P. 114–127.
  15. Valougeorgis D., Vasileiadis N., Titarev V. Validity range of linear kinetic modeling in rarefied pressure driven single gas flows through circular capillaries // European Journal of Mechanics / B Fluids, Special Issue on Non-equilibrium Gas Flows. 2017. V. 64. P. 2–7.
  16. Титарев В.А., Шахов Е.М. Концевые эффекты при истечении разреженного газа через длинную трубу в вакуум // Известия РАН. МЖГ. 2013. №5. C. 146–158.
  17. Sharipov F., Seleznev V. Data on internal rarefied gas flows // J. Phys. Chem. Ref. Data. 1998. V. 27. No. 3. P. 657–706.
  18. Воронич И.В., Титарев В.А. Численный анализ течения разреженного газа через систему коротких каналов // Журнал вычислительной математики и математической физики. 2023. Т. 63. №12. C. 1942–1959.
  19. Gavasane A., Agrawal A., Pradeep A.M., Bhandarkar U. Simulation of a temperature drop for the flow of rarefied gases in microchannels // Numerical Heat Transfer, Part A: Applications. 2017. V. 71. No. 10. P. 1066–1079.
  20. Титарев В.А. Применение кода Несветай к решению трехмерных задач высотной аэродинамики // Ж. вычисл. матем. и матем. физ., спецвыпуск по случаю 90-летия академика С.К. Годунова. 2020. Т. 60. №4. C. 752–764.
  21. Ansys CFX, version 2021 R2. https://www.ansys.com/products/fluids/ansys-cfx
  22. Barth T., Jespersen D.C. The design and application of upwind schemes on unstructured meshes // AIAA paper 89-0366. 1989.
  23. Rao S.S. The Finite Element Method in Engineering. 6th ed. Elsevier, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences