Turbulent Boundary Layer on a Plate in Compressible Gas Flow

Cover Page

Cite item

Full Text

Abstract

For the compressible turbulent boundary layer, the results of the numerical study using the three-parameter RANS turbulence model are compared with the results of direct numerical simulation (DNS). It is shown that the calculation results using the RANS model are in satisfactory agreement with the DNS results at the Mach numbers from 6 to 14. This makes it possible to recommend the use of the RANS model in engineering calculations of the hypersonic boundary layer when there is no need for powerful computing systems.

About the authors

V. G Lushchik

Moscow State University, Institute of Mechanics

Email: vgl_41@mail.ru
Moscow, Russia

A. I Reshmin

Moscow State University, Institute of Mechanics

Email: alexreshmin@rambler.ru
Moscow, Russia

References

  1. Wilcox D.C. Turbulence Modeling for CFD. 3rd Edition, DCW Industries, Canada, CA, USA, 2006. 550 p.; ISBN–13:978–0963605153; ISBN–10:0963605151.
  2. Гуляев А.Н., Козлов В.Е., Секундов А.Н. К созданию универсальной однопараметрической модели для турбулентной вязкости // Изв. РАН. МЖГ. 1993. № 4. С. 69–81.
  3. Spalart P.R., Allmaras S.R. A One-Equation Turbulence Model for Aerodynamics Flows. Recherche Aerospatiale, No. 1. 1994. P. 5–21. https://doi.org/10.2514/6.1992–439
  4. Иевлев В.М. Численное моделирование турбулентных течений. М.: Наука, 1990. 216 с.
  5. Лущик В.Г., Павельев А.А., Якубенко А.Е. Трёхпараметрическая модель сдвиговой турбулентности // Изв. АН СССР. МЖГ. 1978. № 3. С. 13–25.
  6. Лущик В.Г., Павельев А.А., Якубенко А.Е. Турбулентные течения. Модели и численные исследования (обзор) // Изв. РАН. МЖГ. 1994. № 4. С. 4–27.
  7. Лущик В.Г., Павельев А.А., Якубенко А.Е. Уравнения переноса для характеристик турбулентности: моделии результаты расчетов // Итоги науки и техники. Сер. Механика жидкости и газа. М.: ВИНИТИ. 1988. Т. 22. С. 3–61.
  8. Лущик В.Г., Якубенко А.Е. Пограничный слой в соплах ЖРД (обзор) // Труды ГДЛ-ОКБ. № 18. Москва. 2000. С. 38–59.
  9. Козлов В.Е. Учет скоростной сжимаемости однопараметрическими моделями турбулентности // Изв. РАН. МЖГ. 2021. № 5. С. 25–33.
  10. Zhang C., Duan L., Choudhari M.M. Direct Numerical Simulation Database for Supersonic and Hypersonic Turbulent Boundary Layers // AIAA Journal. 2018. V. 56. No. 11. P. 4297–4311. https://doi.org/10.2514/1.1057296
  11. Huang J., Bretyke J.-V., Duan L. Assessment of Turbulence Models in a Hypersonic Cold-Wall Turbulent Boundary Layer // Fluids. 2019. V. 4. No. 37. P. 10. https://doi.org/10.3390/fluids4010037
  12. Лущик В.Г., Якубенко А.Е. Сверхзвуковой пограничный слой на пластине. Сравнение расчета с экспериментом // Изв. РАН. МЖГ. 1998. № 6. С. 64–78.
  13. Е.Д. Холкинс, Е.Р. Кинер, Т.Е. Полеж. Трение на поверхности и профили скорости в гиперзвуковом турбулентном пограничном слое на нетеплоизолированных плоских пластинах // Ракетная техника и космонавтика. 1972. Т. 10. № 1. С. 49–58.
  14. Лущик В.Г., Павельев А.А., Якубенко А.Е. Трёхпараметрическая модель турбулентности: расчет теплообмена // Изв. АН СССР. МЖГ. 1986. № 2. С. 40–52.
  15. Лущик В.Г., Павельев А.А., Якубенко А.Е. Уравнение переноса для турбулентного потока тепла. Расчет теплообмена в трубе // Изв. АН СССР. МЖГ. 1988. № 6. С. 42–50.
  16. Лущик В.Г., Павельев А.А. Решмин А.И., Якубенко А.Е. Влияние граничных условий на переход к турбулентности в пограничном слое на пластине при большом уровне внешних возмущений // Изв. РАН. МЖГ. 1999. № 6. С. 111–119.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences