Numerical Study of Flow Structure in an Axisymmetric Channel with Injection of a Radial Jet along the Coanda Surface

Cover Page

Cite item

Full Text

Abstract

The results of numerical study of the flow in a channel with an annular radial jet injected along the Coanda surface are given. To describe the flow of the gas medium, the two-dimensional axisymmetric Reynolds-averaged Navier–Stokes (RANS) equations are used in combination with equations of the semi-empirical − −ω SST turbulence model. The effect of the total pressure and the width of radial jet on the velocity and static pressure distributions is studied and changes in the local structure developed at the sub- and supercritical pressure in the jet are described.

About the authors

M. A Pakhomov

Institute of Thermophysics SB RAS

Email: pma41976@yandex.ru
Novosibirsk, Russia

N. P Skibina

Institute of Thermophysics SB RAS

Email: uss.skibina@gmail.com
Novosibirsk, Russia

V. I Terekhov

Institute of Thermophysics SB RAS

Email: terekhov@itp.nsc.ru
Novosibirsk, Russia

References

  1. Вулис Л.А., Кашкаров В.П. Теория струи вязкой жидкости. М.: Наука, 1965. 431 c.
  2. Глазнев В.Н., Запрягаев В.И., Усков В.Н., Терехова Н.М., Ерофеев В.К., Григорьев В.В., Кожемякин А.О., Котенок В.А., Омельченко А.В. Струйные и нестационарные течения в газовой динамике. Новосибирск: Изд-во СОРАН, 2000. 200 с.
  3. Wille R., Fernholtz H. Report of the first European mechanics colloquium on the Coanda effect // Journal of Fluid Mechanics. 1965. V. 23. No. 4. P. 801–819. https://doi.org/10.1017/S0022112065001702
  4. Lubert C.P. Some recent experimental results concerning turbulent Coanda wall jets // 168th Meeting of the Acoustical Society of America. 2014. V. 22. Paper 040004. https://doi.org/10.1121/2.0000040
  5. Gregory-Smith D.G., Senior P. The effects of base steps and axisymmetry on supersonic jets over Coanda surfaces // International Journal of Heat and Fluid Flow. 1994. V. 15. No. 4. P. 291–298. https://doi.org/10.1016/0142-727X(94)90014-0
  6. Gregory-Smith D.G., Gilchrist A.R., Senior P. A combined system for measurements of high-speed flow by interferometry, schlieren and shadowgraph // Measurement Science and Technology. 1990. V. 1. P. 419–424. https://doi.org/10.1088/0957-0233/1/5/008
  7. Gregory-Smith D.G., Gilchrist A.R. The compressible Coanda wall jet — an experimental study of jet structure and breakaway // International Journal of Heat and Fluid Flow. 1987. V. 8. No. 2. P. 156–164. https://doi.org/10.1016/0142-727X(87)90019-1
  8. Wang Q., Qu F., Zhao Q., Bai J. Numerical study of the hysteresis effect on the supercritical airfoil for the transonic circulation control // Aerospace Science and Technology. 2022. V. 126. Paper 107645. https://doi.org/10.1016/j.ast.2022.107645
  9. Dragan V. Numerical investigations of Coanda lift on a double curvature super circulated ramp // International Journal of Civil & Structural Engineering. 2011. V. 2. No. 1. P. 241–248. https://doi.org/10.6088/ijcser.00202010105
  10. Dragan V. A new mathematical model for high thickness Coanda effect wall jets // Review Air Force Academy. 2013. V. 23. No. 1. P. 23–28.
  11. Shakouchi T., Fukushima S. Fluidic thrust, propulsion, vector control of supersonic jets by flow entrainment and the Coanda effect // Energies. 2022. V. 15. No. 22. P. 858–861. https://doi.org/10.3390/en15228513
  12. Gandomkar M., Amini Foroushani J. Experimental and numerical investigation of using Coanda effect for producing underwater propulsion // Modares Mechanical Engineering. 2020. V. 20. No. 3. P. 777–786.
  13. El Halal Y., Marques C.H., Rocha L.A., Isoldi L.A., Lemos R.D.L., Fragassa C., dos Santos E.D. Numerical study of turbulent air and water flows in a nozzle based on the Coanda effect // Journal of Marine Science and Engineering. 2019. V. 7. No. 2. Paper 21. https://doi.org/10.3390/jmse7020021
  14. Miozzi M., Lalli F., Romano G.P. Experimental investigation of a free-surface turbulent jet with Coanda effect // Experiments in Fluids. 2010. V. 49. P. 341–353. https://doi.org/10.1007/s00348-010-0885-1
  15. Соколова И.Н. Экспериментальное исследование пределов реализации течения Коанда // Ученые записки ЦАГИ. 1983. Т. XIV. №4. С. 124–126.
  16. Соколова И.Н. Горячие струи Коанда // Ученые записки ЦАГИ. 1990. Т. XXI. №4. С. 100–103.
  17. Ганич Г.А., Гущина Н.И., Жулев Ю.Г. Эффект Коанда при выдуве струй из прямоугольных сопл под углом к плоской поверхности // Ученые записки ЦАГИ. 1994. Т. XXV. №3–4. С. 121–125.
  18. Жулев Ю.Г., Макаров В.А., Наливайко А.Г. Интенсификация эффекта Коанда с помощью создаваемых в струе продольных вихрей // Ученые записки ЦАГИ. 1997. Т. 28. №1. С. 139–143.
  19. Zhou Y., Gu Y., Xue L., Jiao Y., Shi N., Deng S. Research on the control of supersonic jet under different boundary conditions // Journal of Visualization. 2024. V. 27. P. 19–32. https://doi.org/10.1007/s12650-023-00948-w
  20. Trancossi M., Dumas A., Vucinic D. Mathematical modeling of Coanda effect // SAE Technical Paper. 2013. Paper 2013-01-2195. https://doi.org/10.4271/2013-01-2195
  21. Saha S., Biswas P., Nath S. Bifurcation phenomena for incompressible laminar flow in expansion channel to study Coanda effect // Journal of Interdisciplinary Mathematics. 2020. V. 23. No. 2. P. 493–502. https://doi.org/10.1080/09720502.2020.1731962
  22. Trancossi M., Pascoa J. The influence of convective exchanges on Coanda effect // INCAS Bulletin. 2019. V. 11. No. 4. P. 191–202. https://doi.org/10.13111/2066-8201.2019.11.4.17
  23. Matsuo S., Setoguchi T., Kudo T., Yu S. Study on the characteristics of supersonic Coanda jet // Journal of Thermal Science. 1998. V. 7. No. 3. P. 165–175. https://doi.org/10.1007/s11630-998-0012-2
  24. Kim H., Raghunathan S., Setoguchi T., Matsuo S. Experimental and numerical studies of supersonic Coanda wall jets // Proc. 38th Aerospace Sciences Meeting and Exhibit. 2000. Paper 0814. https://doi.org/10.2514/6.2000-814
  25. Kim H.D., Rajesh G., Setoguchi T., Matsuo S. Optimization study of a Coanda ejector // Journal of Thermal Science. 2006. V. 15. No. 4. P. 331–336. https://doi.org/10.1007/s11630-006-0331-2
  26. Dumitrache A., Frunzulica F., Ionescu T. Coanda effect on the flows through ejectors and channels // Scientific research and education in the Air Force. 2018. V. 20. P. 161–174. https://doi.org/10.19062/2247-3173.2018.20.21
  27. Dumitrache A., Frunzulica F., Ionescu T.C. Mathematical modelling and numerical investigations on the Coanda effect // Nonlinearity, Bifurcation and Chaos—theory and Applications. 2012. P. 101–132. https://doi.org/10.5772/50403
  28. Киселев С.П., Киселев В.П., Зайковский В.Н. О механизме автоколебаний сверхзвуковой радиальной струи, истекающей в затопленное пространство // Прикладная механика и техническая физика. 2016. Т. 57. №2. С. 53–63.
  29. Косарев В.Ф., Клинков С.В., Зайковский В.Н., Кундасев С.Г. Газодинамика сверхзвуковой радиальной струи. Часть I // Теплофизика и аэромеханика. 2015. Т. 22. №6. С. 693–703.
  30. Ameri M., Dybbs A. Coanda ejector: why it works // Proc. 5th Int. Conference on Laser Anemometry: Advances and Applications. 1993. V. 2052. P. 289–296.
  31. Ameri M. An experimental and theoretical study of Coanda ejectors: PhD Thesis. 1993. 168 p.
  32. Куснер Ю.С., Приходько В.Г., Ермолов В.И. Структура и откачивающие свойства внутренней части кольцевой сверхзвуковой струи // Журнал технической физики. 1985. Т. 55. №1. С. 186–195.
  33. Зеленецкий В.А., Терехов В.И. Эжектор для проветривания горных выработок. Патент РФ №23118119. 27.02.2008. Бюл. №6.
  34. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1991. 600 с.
  35. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. V. 32. №8. P. 1598–1605. https://doi.org/10.2514/3.12149
  36. Frunzulica F., Dumitrache A., Preotu O., Dumitrescu H. Control of two-dimensional turbulent wall jet on a Coanda surface // PAMM. 2011. V. 11. No. 1. P. 651–652. https://doi.org/10.1002/pamm.201110315
  37. Gross A., Fasel H. RANS, URANS, and LES of Coanda wall jet flows //Proc. 36th AIAA Fluid Dynamics Conference and Exhibit. 2006. Paper 3371. https://doi.org/10.2514/6.2006-3371
  38. ANSYS FLUENT 12.1 Theory guide, Solver Theory. ANSYS Inc., 2010.
  39. Абрамович Г.Н., Гиршович Т.А., Крашенников С.Ю., Секундов А.Н., Смирнова И.П. Теория турбулентных струй. М.: Наука, 1984. 716 с.
  40. Sierra J., Ardila J., Vélez S., Maya D., Hincapié D. Simulation analysis of a Coanda — effect ejector using CFD // Tecciencia. 2017. V. 12. No. 22. P. 17–25. https://doi.org/10.18180/tecciencia.2017.22.3
  41. Даньков Б.Н., Дубень А.П., Козубская Т.К. Анализ автоколебательных процессов в каверне с открытым типом течения на основе данных вихреразрешающих расчетов // Изв. РАН. Механика жидкости и газа. 2023. №4. C. 156–166. https://doi.org/10.31857/S1024708422600774
  42. Dunaevich L., Greenblatt D. Stability and transition on a Coanda cylinder // Physics of Fluids. 2020. V. 32. Paper 084106. https://doi.org/10.1063/5.0013534

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences