Expression of genes regulating muscle growth in pink salmon Oncorhynchus gorbuscha (Walb.) smolts from different rivers of the White and Barents Sea basins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The expression of genes encoding myogenic regulatory factors – Myf5, MyoG, MyoD1a, MyoD1b, heavy (MyHC) and light (mlc2) myosin chains, as well as myostatin (Mstn1a) – was studied in pink salmon Oncorhynchus gorbuscha (Walb.) smolts caught in rivers during the period of migration for fattening to the White and Barents Seas. It was found that individuals from the Keret River had higher expression levels of the mlc2, MyHC, MyoD1a, MyoD1b and MyoG genes compared to those in the Varzuga River. It was shown that the smolts from the rivers of the White Sea basin – Indera, Keret and Umba, had higher expression values of the MyoD1b and MyoG genes, and in the Varzuga River – Myf5, in contrast to fish from the Voronya River of the Barents Sea basin. The highest level of expression of the Mstn1a gene was detected in pink salmon in the Voronya River. The obtained results indicate differences in the regulation of myogenesis in pink salmon smolts depending on the temperature and feeding conditions of habitat in different rivers.

Full Text

Restricted Access

About the authors

N. S. Shulgina

Institute of Biology – a separate subdivision of the FSBI FRC “Karelian Research Center of the Russian Academy of Sciences”

Author for correspondence.
Email: Shulgina28@yandex.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910

M. V. Kuznetsova

Institute of Biology – a separate subdivision of the FSBI FRC “Karelian Research Center of the Russian Academy of Sciences”

Email: Shulgina28@yandex.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910

D. A. Efremov

Institute of Biology – a separate subdivision of the FSBI FRC “Karelian Research Center of the Russian Academy of Sciences”

Email: Shulgina28@yandex.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910

S. A. Murzina

Institute of Biology – a separate subdivision of the FSBI FRC “Karelian Research Center of the Russian Academy of Sciences”

Email: Shulgina28@yandex.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910

N. N. Nemova

Institute of Biology – a separate subdivision of the FSBI FRC “Karelian Research Center of the Russian Academy of Sciences”

Email: Shulgina28@yandex.ru
Russian Federation, Pushkinskaya str., 11, Petrozavodsk, 185910

References

  1. Азбелев В. В., Яковенко А. А. Материалы по акклиматизации горбуши в бассейне Баренцева и Белого морей // Труды ПИНРО. 1963. № 15. С. 7–26.
  2. Алексеев А. П., Кулачкова В. Г. Дальневосточная горбуша в бассейнах Белого и Баренцева морей (второй, «магаданский», этап акклиматизации) // Виды – вселенцы в европейских морях России: сб. науч. трудов. Апатиты: КНЦ РАН, 2000. 312 с.
  3. Алтухов Ю. П., Салменкова Е. А., Омельченко В. Т. Популяционная генетика лососевых рыб. М.: Наука, 1997.
  4. Зорина В. В. Основы полимеразной цепной реакции (ПЦР). Москва, 2012. 80 c.
  5. Зубченко А. В. Горбуша (Oncorhynchus gorbuscha): проблемы акклиматизации на европейском севере России / А. В. Зубченко, А. Е. Веселов, С. М. Калюжин. Петрозаводск-Мурманск: Фолиум, 2004. 82 с.
  6. Карпевич А. Ф. Акклиматизация и культивирование лососевых рыб-интродуцентов / А. Ф. Карпевич, В. С. Агапов, Г. М. Магомедов. Москва: ВНИРО, 1991. 209 с.
  7. Коросов А. В., Горбач В. В. Компьютерная обработка биологических данных: Метод. пособие. Петрозаводск: ПетрГУ, 2007. 76 с.
  8. Кудерский Л. А. Работы по акклиматизации горбуши Oncorhynchus gorbussa (Walbaum, 1972) в России // Проблемы изучения, рационального использования и охраны ресурсов Белого моря. Материалы IX Международной конференции. Петрозаводск, 2005. С.172–183.
  9. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 480 с.
  10. Чурова М. В., Мещерякова О. В., Веселов А. Е., Немова Н. Н. Активность ферментов энергетического и углеводного обмена и уровень некоторых молекулярно-генетических показателей у молоди лосося (Salmo salar L.), различающейся возрастом и массой // Онтогенез. 2015. Т. 46. № 5. С. 304–312.
  11. Ahammad A. S., Asaduzzaman M., Ceyhun S. B., Ceylan H., Asakawa S., Watabe S., Kinoshita S. Multiple transcription factors mediating the expressional regulation of myosin heavy chain gene involved in the indeterminate muscle growth of fish // Gene. 2019. V. 687. P. 308–318. https://doi.org/10.1016/j.gene.2018.11.040
  12. Alami-Durante H., Cluzeaud M., Bazin D., Schrama J. W., Saravanan S., Geurden I. Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2019. V. 230. P. 91–99. https://doi.org/10.1016/j.cbpa.2019.01.009
  13. Almeida F. L.A., Pessotti N. S., Pinhal D., Padovani C. R., de Jesus Leitão N., Carvalho R. F., Martins C., Portella M. C., Pai-Silva M.D. Quantitative expression of myogenic regulatory factors MyoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth // Micron. 2010. V. 41. P. 997–1004. https://doi.org/10.1016/j.micron.2010.06.012
  14. Beamish R. J., Mahnken C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change // Progress in Oceanography. 2001. T. 49. P. 423–437. https://doi.org/10.1016/S0079-6611(01)00034-9
  15. Berkes C. A., Tapscott S. J. MyoD and the transcriptional control of myogenesis // Seminars in cell & developmental biology. Acad. Press, 2005. V. 16. № 4-5. P. 585–595. https://doi.org/10.1016/j.semcdb.2005.07.006
  16. Bower N. I., Johnston I. A. Paralogs of Atlantic salmon myoblast determination genes are distinctly regulated in proliferating and differentiating myogenic cells // Am. J. Physiol. Regul. Comp. Physiol. 2010. V. 298. P. R1615-R1626. https://doi.org/10.1152/ajpregu.00114.2010
  17. Bower N. I., Taylor R. G., Johnston I. A. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon // Frontiers in Zoology. 2009. V. 6. № 1. P. 1–13. 1). https://doi.org/10.1186/1742-9994-6-8
  18. Chapalamadugu K. C., Robison B. D., Drew R. E., Powell M. S., Hill R. A., Amberg J. J., Rodnick K. J., Hardy R. W., Hill M. L., Murdoch G. K. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout // Comp. Biochem. Physiol. B. 2009. V. 153. P. 66–72. https://doi.org/10.1016/j.cbpb.2009.01.013
  19. Codina M., Capilla E., Jimenez-Amilburu V., Navarro I., Du S. J., Johnston I. A., Gutierrez J. Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata) // Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology. 2014. V. 167. P. 90–99. https://doi.org/10.1016/j.cbpa.2013.10.020
  20. de Paula T. G., de Almeida F. L.A., Carani F. R., Vechetti-Junior I.J., Padovani C. R., Salomao R. A.S., Dal-Pai-Silva M. Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus) // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2014. V. 169. P. 31–37. https://doi.org/10.1016/j.cbpb.2013.12.004
  21. Dhillon R. S., Esbaugh A. J., Wang Y. S., Tufts B. L. Characterization and expression of a myosin heavy–chain isoform in juvenile walleye Sander vitreus // Journal of fish biology. 2009. V. 75. № 5. P. 1048–1062. https://doi.org/10.1111/j.1095-8649.2009.02376.x
  22. Fauconneau B., Paboeuf G. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss) // Cell and tissue research. 2000. V. 301. P. 459–463. https://doi.org/10.1007/s004419900168
  23. Fernandes J. M.O., Mackenzie M. G., Wright P. A., Steele S. L., Suzuki Y., Kinghorn J. R., Johnston I. A. Myogenin in model pufferfish species: Comparative genomic analysis and thermal plasticity of expression during early development // Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 2006. V. 1. № 1. P. 35–45. https://doi.org/10.1016/j.cbd.2005.09.003
  24. Ganassi M., Badodi S., Ortuste Quiroga H. P., Zammit P. S., Hinits Y., Hughes S. M. Myogenin promotes myocyte fusion to balance fibre number and size // Nature Communications. 2018. V. 9. № 1. P. 1–17. https://doi.org/10.1038/s41467-018-06583-6
  25. Gordeeva N. V., Salmenkova E. A., Prusov S. V. Variability of biological and population genetic indices in pink salmon, Oncorhynchus gorbuscha transplanted into the White Sea basin // J. Ichthyol. 2015. V. 55. P. 69–76. https://doi.org/10.1134/S0032945215010051
  26. Heard W. R. Life history of pink salmon (Oncorhynchus gorbuscha) // Pacific salmon life histories / Eds Groot C., Margolis L. Vancouver: UBC Press, 1991. P. 121–230.
  27. Hevrøy E. M., Jordal A. O., Hordvik I., Espe M. et al. Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar // Aquaculture. 2006. V. 252. № 2–4. P. 453–461. https://doi.org/10.1016/j.aquaculture.2005.07.003
  28. Ikeda D., Ono Y., Snell P., Edwards Y. J., Elgar G., Watabe S. Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: evidence from comparative genomic analysis // Physiol. Genomics. 2007. V. 32. P. 1–15. https://doi.org/10.1152/physiolgenomics.00278.2006
  29. Johansen K. A., Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2006. V. 144. № 1. P. 119–127. https://doi.org/10.1016/j.cbpb.2006.02.001
  30. Johansen K. A., Overturf K. Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss) // Marine Biotechnology. 2005. V. 7. № 6. P. 576–587. https://doi.org/10.1007/s10126-004-5133-3
  31. Johnston I. A. Environment and plasticity of myogenesis in teleost fish // J. Exp. Biol. 2006. № 209. P. 2249–2264. https://doi.org/10.1242/jeb.02153
  32. Johnston I. A., Lee H.-T., Macqueen D. J., Paranthaman K., Kawashima C., Anwar A., Kinghorn J. R., Dalmay T. Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes // J. Exp. Biol. 2009. V. 212. P. 1781–1793. https://doi.org/10.1242/jeb.029918
  33. Johnston I. A., Macqueen D. J., Watabe S. Molecular biotechnology of development and growth in fish muscle // Fisheries for global welfare and environment, 5th World Fisheries Congress. 2008. P. 241–262.
  34. Johnston I. A., Manthri S., Smart A., Campbell P. et al. Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation // J. Exp. Biol. 2003. V. 206. № 19. P. 3425–3435. https://doi.org/10.1242/jeb.00577
  35. Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression // Journal of biological chemistry. 2002. V. 277. № 51. P. 49831–49840. https://doi.org/10.1074/jbc.M204291200
  36. Macqueen D. J., Johnston I. A. An update on MyoD evolution in teleosts and a proposed consensus nomenclature to accommodate the tetraploidization of different vertebrate genomes // PLoS ONE. 2008. V. 3. P. e1567. https://doi.org/10.1371/journal.pone.0001567
  37. Moss J. H., Beauchamp D. A., Cross A. D., Myers K. W., Farley E. V., Jr. Murphy, J.M., Helle J. H. Evidence for size-selective mortality after the first summer of ocean growth by pink Salmon // Transactions of the American Fisheries Society. 2005. V. 134. P. 1313–1322. https://doi.org/10.1577/T05-054.1
  38. Nagasawa K., Giannetto A., Fernandes J. M.O. Photoperiod influences growth and mll (mixed-lineage leukaemia) expression in Atlantic cod // PLoS ONE. 2012. V. 7. P. e36908. https://doi.org/10.1371/journal.pone.0036908
  39. Østbye T. K.K, Wetten O. F., Tooming-Klunderud A., Jakobsen K. S., Yafe A., Etzioni S. Andersen O. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2 // Gene. 2007. V. 403. № 1-2. P. 159–169. https://doi.org/10.1016/j.gene.2007.08.008
  40. Parker M. H., Seale P., Rudnicki M. A. Looking back to the embryo: defining transcriptional networks in adult myogenesis // Nature Reviews Genetics. 2003. V. 4. № 7. P. 497–507. https://doi.org/10.1038/nrg1109
  41. Quinn T. P. The behavior and ecology of Pacific Salmon and Trout. Seattle; WA: University of Washington Press, 2005.
  42. Radchenko V. I., Beamish R. J., Heard W. R., Temnykh O. S. Ocean ecology of pink salmon // The ocean ecology of Pacific Salmon and Trout / Ed. Beamish R. J. Bethesda; MD: American Fisheries Society, 2018. P. 15–160.
  43. Rescan P. Y., Gauvry L., Paboeuf G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes // FEBS Letters. 1995. V. 362. № 1. P. 89–92. https://doi.org/10.1016/0014-5793(95)00215-U
  44. Rowlerson A., Veggetti A. Cellular mechanisms of post embryonic growth in aquaculture species // Fish Physiol.: Muscle Development and Growth / Eds Johnston I. A. San Diego: Academic Press, 2001. P. 103–140.
  45. Sandlund O. T., Berntsen H. H., Fiske P., Kuusela J., Muladal R., Niemelä E., Uglem I., Forseth T., Mo T. A., Thorstad E. B., Veselov A. E., Vollset K. W., Zubchenko A. V. Pink salmon in Norway: the reluctant invader // Biological Invasions. 2019. V. 21. № 4. P. 1033–1054. https://doi.org/10.1007/s10530-018-1904-z
  46. Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative CT method // Nature protocols. 2008. V. 3. № 6. P. 1101–1108. doi: 10.1038/nprot.2008.73
  47. Terova G., Bernardini G., Binelli G., Gornati R., & Saroglia M. cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels // Domestic Animal Endocrinology. 2006. V. 30. № 4. P. 304–319. https://doi.org/10.1016/j.domaniend.2005.08.003
  48. Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation // J. Biological Chemistry. 2000. V. 275. № 51. P. 40235–40243. doi: 10.1074/jbc.M004356200
  49. Wang Y., Szczesna-Cordary D., Craig R., Diaz-Perez Z., Guzman G., Miller T., Potter J. D. Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle development // FASEB J. 2007. V. 21. № 9. P. 22052214. https://doi.org/10.1096/fj.06-7538com
  50. Watabe S. Myogennic Regulatory Factros // Fish Physiol.: Muscle Development and Growth / Eds Johnston I. A. San Diego: Academic Press, 2001. P. 19–41.
  51. Weber T. E., Bosworth B. G. Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish // Aquaculture. 2005. V. 246. № 1-4. P. 483–492. https://doi.org/10.1016/j.aquaculture.2005.02.032
  52. Wilkes D., Xie S. Q., Stickland N. C., Alami-Durante H., Goldspink G. Temperature and myogenic factor transcript levels during early development determines muscle growth potential in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) // J. Exp. Biol. 2001. V. 204. P. 2763–2771. https://doi.org/10.1242/jeb.204.16.2763
  53. Wu P., Chu W., Liu X., Guo X., Zhang J. The influence of short-term fasting on muscle growth and fiber hypotrophy regulated by the rhythmic expression of clock genes and myogenic factors in Nile tilapia // Marine Biotechnology. 2018. V. 20. P. 750–768. https://doi.org/10.1007/s10126-018-9846-0
  54. Zhu K., Wang H., Wang H., Gul Y., Yang M., Zeng C., Wang W. Characterization of muscle morphology and satellite cells, and expression of muscle-related genes in skeletal muscle of juvenile and adult Megalobrama amblycephala // Micron. 2014. V. 64. P. 66–75. https://doi.org/10.1016/j.micron.2014.03.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relative expression level of genes Myf5 (a), MyoG (b), MyoD1a (c), MyoD1b (d) (UE) in pink salmon smolts from different rivers, M±SE. Differences are significant at p≤0.05: a – compared with fish from the Varzuga River, b – compared with fish from the Indera River, c – compared with fish from the Keret River, d – compared with fish from the Umba River.

Download (567KB)
3. Fig. 2. Relative expression level of genes MyHC (a), mlc2 (b) (UE) in pink salmon smolts from different rivers, M±SE. Differences are significant at p≤0.05: a – compared with fish from the Varzuga River, c – compared with fish from the Keret River.

Download (777KB)
4. Fig. 3. Relative expression level of the Mstn1a gene (LE) in pink salmon smolts from different rivers, M±SE. Designations as in Fig. 1.

Download (400KB)

Copyright (c) 2025 Russian Academy of Sciences