Membrane-Protective effect of lipid extract of Marine Red Seaweed Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko under experimental carbone tetrachloride poisoning
- Authors: Fomenko S.E.1, Kushnerova N.F.1, Sprygin V.G.1
-
Affiliations:
- Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences
- Issue: No 5 (2025)
- Pages: 530–541
- Section: BIOCHEMISTRY
- URL: https://cardiosomatics.ru/1026-3470/article/view/689893
- DOI: https://doi.org/10.31857/S1026347025050048
- ID: 689893
Cite item
Abstract
Carbon tetrachloride (CCl4) disrupts the stable operation of biological membranes, causing disturbances in the lipid bilayer, as well as changes in the properties of membrane lipids. The protective effect of lipid complex isolated from the marine red alga Ahnfeltia tobuchiensis and the reference drug “Essentiale” was investigated on the plasma membranes of mouse erythrocytes, obtained in the modeling of toxic hepatitis induced byCCl₄. The lipid extract from A. tobuchiensis was not inferior in efficiency to the phospholipid preparation essenciale in restoring the indices of both membrane lipids and blood plasma lipids, as well as in normalizing the parameters of antioxidant protection of the organism. The membrane-protective effect of algal extract is due to its multicomponent composition including glyco- and phospholipids with predominance of polyunsaturated fatty acids of n-3 and n-6 families.
Full Text

About the authors
S. E. Fomenko
Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences
Author for correspondence.
Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041
N. F. Kushnerova
Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences
Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041
V. G. Sprygin
Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences
Email: sfomenko@poi.dvo.ru
Russian Federation, Vladivostok, 690041
References
- Беседнова Н. Н. Морские гидробионты – потенциальные источники лекарств. // Здоровье. Медицинская экология. Наука. 2014. Т. 57, № 3. С. 4–10.
- Венгеровский А. И., Маркова И. В., Саратиков А. С. Методические указания по изучению гепатозащитной активности фармакологических веществ // Руководство по экспериментальному (доклиническому) изучению новых фармакологических средств. М.: ОАО Издательство “Медицина”, 2005. С. 683–691.
- Грибанов Г. А. Особенность структуры и биологическая роль лизофосфолипидов // Вопр. мед. химии. 1991. Т. 37, № 4. С. 2–16.
- Мухомедзянова С. В. Пивоваров Ю. И. Богданова О. В., Дмитриева Л. А., Шулунов А. А. Липиды биологических мембран в норме и патологии (обзор литературы) // Acta biomedical scientifica. 2017. Т. 2, № 5(1). С. 43–49. https://doi.org/10.12737/article_59e8bcd3d6fcb1.49315019
- Руководство по проведению доклинических исследований лекарственных средств. Ч.1. М.: Гриф и К, 2012. 944 с.
- Соколова Е. В., Барабанова А. О., Хоменко В. А., Соловьева Т. Ф., Богданович Р. Н., Ермак И. М. Изучение in vitro и ex vivo антиоксидантной активности каррагинанов – сульфатированных полисахаридов красных водорослей // Бюлл. экспериментальной биологии и медицины. 2010. Т. 150, № 10. С. 398–401.
- Суховерхов С. В., Кадникова И. А., Подкорытова А. В. Получение агара и агарозы из красных водорослей Ahnfeltia tobuchiensis // Прикл. биохим. микробиол. 2000. Т.36, № 2. С. 238–240.
- Титлянов Э. А., Титлянова Т. В. Морские растения стран Азиатско–Тихоокеанского региона, их использование и культивирование. Владивосток: Дальнаука, 2012. 377 с.
- Хотимченко С. В. Липиды морских водорослей-макрофитов и трав. Структура, распределение, анализ. Владивосток: Дальнаука, 2003. 230 с.
- Ahmad F. F., Cowan D. L., Sun A. Y. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in gerbil // Life Sci. 1987. V. 41. P. 2469–2475. https://doi.org/10.1016/0024-3205(87)90673-4
- Akyuz F., Aydin O., Demir T. A., Kanbak G. The effects ofCCl₄ on Na+/K+-ATPase and trace elements in rats // Biol. Trace Elem. Res. 2009. Vol. 132, № 1–3. P 207–214. https://doi.org/10.1007/s12011-009-8395-9
- Allen D., Hasanally D., Ravandi A. Role oxidized phospholipids in cardiovascuiar pathology // Clin Lipidol. 2013. V. 8. P. 205–215. https://doi.org/10.2217/clp.13.13.
- Amenta J. S. A rapid chemical method for quantification of lipids separated by thin-layer chromatography // J. Lipid Res. 1964. V. 5. P. 270–272. https://doi.org/10.1016/S0022-2275 (20)40251-2
- Asztalos I. B., Gleason J. A., Sever S., Gedik R., Asztalos B. F., Horvath K. V., Dansinger M. L., Lamon-Fava S., Schaefer E. J. Effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular disease risk factors: a randomized clinical trial // Metab. Clin. Exp. 2016. V. 65, № 11. P. 1636–1645. https://doi.org/10.1016/j.metabol.2016.07.010
- Bartosz G., Janaszewska A., Ertel D., Bartosz M. Simple determination of peroxyl radical-trapping capacity // Biochem Mol Biol Int. 1998. V. 46. P. 519–528. https://doi.org/10.1080/15216549800204042
- Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37, № 8. P. 911–917.
- Boll M., Weber L. W., Becker E., Stampfl A. Pathogenesis of carbon tetrachloride-induced hepatocyte injury bioactivation ofCCl₄ by cytochrome P450 and effects on lipid homeostasis // Z. Naturforsch C. J. Biosci. 2001. V. 56 (1–2). P. 111–21. https://doi.org/10.1515/znc-2001-1-218
- Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods in Enzymology. 1978. N.Y.: Academic Press. V. 52. P. 302–310.
- Cumming D. S., Mchowat J., Schnellmann R. G. Phospholipase À2s in cell injury and death // J. pharmacol experim therapeutic. 2000. V. 294. P. 793–799.
- Fomenko S. E., Kushnerova N. F., Sprygin V. G., Drugova E. S., Lesnikova L. N., Merzlyakov V. Y., Momot T. V. Lipid composition, content of polyphenols, and antiradical activity in some representatives of marine algae // Russ. J. Plant. Physiol. 2019. V. 66, № 6. P. 942–949. https://doi.org/10.1134/S1021443719050054
- Garrel C., Alessandri J.-M., Guesnet P., Al-Gubory K.H. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development // Int. J. Biochem. Cell Biol. 2012. V. 44, № 1. P. 123–131. https://doi.org/10.1016/j.biocel.2011.10.007
- Jump D. B., Depner C. M., Tripathy S., Lytle K. A. Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer // Adv. Nutr. 2015. V. 6. № 6. P. 694–702. https://doi.org/10.3945/an.115.009423
- Khotimchenko S. V., Gusarova I. S. Red algae of peter the great bay as a source of arachidonic and eicosapentaenoic acids // Russian Journal of Marine Biology. 2004. V. 30, № 3. P. 183–187. https://doi.org/10.1023/B:RUMB.0000033953.67105.6b
- Kostetsky E. Y., Goncharova S. N., Sanina N. M., Shnyrov V. L. Season influence on lipid composition of marine macrophytes // Bot. Mar. 2004. V. 47, № 2. P. 134–139. http://dx.doi.org/10.1515/BOT.2004.013.
- Kushnerova N. F., Fomenko S. E., Sprygin V. G., Momot T. V. The Effects of the lipid complex of extract from the marine red alga Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko on the biochemical parameters of blood plasma and erythrocyte membranes during experimental stress exposure // Russian Journal of Marine Biology. 2020. Vol. 46, № 4. P. 277–283. http://dx.doi.org/10.1134/S1063074020040057
- Manibusan M. K., Odin M., Eastmond D. A. Postulated carbon tetrachloride mode of action: a review // J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007. Vol. 25, № 3. P. 185–209. https://doi.org/10.1080/10590500701569398
- Massaccesi L., Galliera E., Romanelli M. M. C. Erythrocytes as markers of oxidative stress related pathologies // Mech. Ageing Dev. 2020. V. 191. P. 111333. https://doi.org/10.1016/j.mad.2020.111333.
- Menon V. V., Lele S. S. Nutraceuticals and bioactive compounds from seafood processing waste. In Springer Handbook of Marine Biotechnology. Springer: Berlin/Heidelberg. Germany. 2015. P. 1405–1425. http://dx.doi.org/10.1007/978-3-642-53971-8_65
- Muriel P., Mourelle M. The role of membrane composition in ATPase activities of cirrhotic rat liver: effect of silymarin. J Appl Toxicol. 1990. V.10. P. 281–284. https://doi.org/10.1002/jat.2550100409
- Nava-Ocampo A.A., Suster S., Muriel P. Effect of colchiceine and ursodeoxycholic acid on hepatocyte and erythrocyte membranes and liver histology in experimentally induced carbon tetrachloride cirrhosis in rats // European journal of clinical investigation. 1997. V. 27. P. 77–84. https://doi.org/10.1046/j.1365-2362.1997.910615.x
- Ohnishi ST. Importance of biological membranes in disease processes. In: Ohnishi ST, Ohnishi T, eds. Cellular Membrane. A Key to Disease Processes. Florida: CRC Press. 1993. P. 3–19.
- Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectrophotometric method for the determination of superoxide-dismutase activity in tissue-extracts. Analyt Biochem. 1986. V. 154. P. 536–541. https://doi.org/10.1016/0003-2697(86)90026-6
- Richard D., Kefi K., Barbe U., Bausero P., Visioli F. Polyunsaturated fatty acids as antioxidants // Pharmacol. Res. 2008. V. 57, № 6. P. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002
- Rouser G., Kritchevsky G., Yamamoto A. Column chromatographic and associated procedures for separation and determination of phosphatides and glicolipids // Lipid Chromatographic Analysis. New York: Dekker, 1967. V. 1. P. 99–162.
- Ruxton C. H.S., Calder P. C., Reed S. C., Simpson M. J.A. The impact of long-chain n-3 polyunsaturated fatty acids on human health // Nutr Res Reviews. 2005. V. 18. P. 113–129. https://doi.org/10.1079/nrr200497
- Sanzgiri U. Y., Srivatsan V., Muralidhara S., Dallas C. E., Bruckner J. V. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures // Toxicol. Appl. Pharmacol. 1997. V. 143, № 1. P. 120–129. https://doi.org/10.1006/taap.1996.8079
- Shevchenko O. G., Shishkina L. N. Comparative analysis of phospholipid composition in blood erythrocytes of various species of mouse-like rodents // J. Evol. Biochem. Physiol. 2011. V. 47, № 2. P. 179–186. http://dx.doi.org/10.1134/S0022093011020071
- Sprygin V. G., Kushnerova N. F., Fomenko S. E. Effect of a lipid complex from the marine red alga Ahnfeltia tobuchiensis on the metabolic responses of the liver under conditions of experimental toxic hepatitis // Biology Bulletin. 2021. V. 48, Suppl. 3. P. S10–S18. https://doi.org/10.1134/S1062359022010149.
- Sprygin V. G., Kushnerova N. F., Fomenko S.E Drugova E. S., Lesnikova L. N., Merzlyakov V. Y. Lipid-correcting and antioxidant effects of the lipid complex from the red marine algae Ahnfeltia tobuchiensis under the conditions of a high-fat diet // Biology Bulletin. 2024. V. 51, № 1. P 37–46. http://dx.doi.org/10.1134/S1062359023601982
- Suleria H. A., Masci P., Gobe G., Osborne S. Current and potential uses of bioactive molecules from marine processing waste // J. Sci. Food Agric. 2016. V. 96. P. 1064–1067. https://doi.org/10.1002/jsfa.7444
- Vascovsky V. E., Kostetsky E. Y., Vasendin I. M. Universal Reagent for Phospholipid Analysis // J. Chromatography. 1975. V. 114. P. 129–141. https://doi.org/10.1016/s0021-9673(00)85249-8
Supplementary files
