Modern pollen rain in the Bale Mountains (Ethiopia) along an elevational gradient

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A modern pollen rain study along an altitudinal gradient in the Bale Mountains National Park (Ethiopia, East Africa) was carried out from 1580 m a.s.l. to 4110 m a.s.l. The contents of seven artificial pollen traps from seven plant communities corresponding to different altitudinal belts were investigated. Pollen spectra reflect dominant taxa of plant communities in most cases. However, the pollen of some widespread plants was underrepresented in the spectra due to low pollen production, flowering rhythms, and local features of the vegetation cover. Long-distance pollen transport was noted in all plant communities, but it was most pronounced in open communities.

Full Text

Restricted Access

About the authors

K. A. Savina

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119071

E. A. Kuzmicheva

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Author for correspondence.
Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119071

E. E. Severova

Lomonosov Moscow State University; MSU-BIT University

Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119991; Schenzhen, China, 518172

B. F. Khasanov

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences;
National Research University Higher School of Economics

Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119071; Moscow, 109028

W. W. Girmay

Addis Ababa University

Email: kuzmicheva.evgeniya@gmail.com
Ethiopia, Addis Ababa, P.O. Box 1176

S. Nemomissa

Addis Ababa University

Email: kuzmicheva.evgeniya@gmail.com
Ethiopia, Addis Ababa, P.O. Box 1176

O. A. Krylovich

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119071

A. B. Savinetsky

A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: kuzmicheva.evgeniya@gmail.com
Russian Federation, Moscow, 119071

References

  1. Носова М. Б. Исследования современных пыльцевых спектров: инструменты, подходы, современные направления // Бот. жур. 2020. Т. 105. № 12. С. 1147–1168. https://doi.org/10.31857/S0006813620120145
  2. African Pollen Database [Electronic resource]. 2005. URL: http://apd.sedoo.fr/pollen/
  3. Bajpai A., Singh A. K., Ravishankar H. Reproductive phenology, flower biology and pollination in jamun (Syzygium cuminii L.) // Indian J. Hortic. 2012. V.69. №3. P. 416–419.
  4. Behling H., Cohen M. C.L., Lara R. J. Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in North-Eastern Pará, Brazil // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001. V. 167. P. 225–242. https://doi.org/10.1016/S0031-0182(00)00239-X
  5. Bittner L., Bliedtner M., Grady D., Gil-Romera G., Martin-Jones C., Lemma B., Mekonnen B., Lamb H. F., Yang H., Glaser B., Szidat S., Salazar G., Rose N. L., Opgenoorth L., Miehe G., Zech W., Zech M. Revisiting afro-alpine Lake Garba Guracha in the Bale Mountains of Ethiopia: rationale, chronology, geochemistry, and paleoenvironmental implications // J. Paleolimnol. 2020. V. 64. P. 293–314. https://doi.org/10.1007/s10933-020-00138-w
  6. Bonnefille R. Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago // Nature. 1983. V. 303. № 5917. P. 487–491. https://doi.org/10.1038/303487a0
  7. Bonnefille R., Buchet G., Friis I., Kelbessa E., Mohammed M. U. Modern pollen rain on an altitudinal range of forests and woodlands in South West Ethiopia // Opera Botanica. 1993. V. 121. P. 71–84.
  8. Bush M. B., Correa‐Metrio A., van Woesik R., Collins A., Hanselman J., Martinez P., McMichael C.N. Modern pollen assemblages of the Neotropics // J. Biogeogr. 2021. V. 48. № 1. P. 231–241. https://doi.org/10.1111/jbi.13960
  9. Bussmann R. W. The forest vegetation of Harenna escarpment (Bale Province, Ethiopia) – syntaxomomy and phytogeographical affinities // Phytocoenologia. 1997. V. 27. № 1. P. 1–23. https://doi.org/10.1127/phyto/27/1997/1
  10. Bussmann R. W. Vegetation zonation and nomenclature of African mountains – an overview // Lyonia. 2006. V. 11. № 1. P. 41–66.
  11. Faegri K., Iversen J. Textbook of pollen analysis. 3d ed. New York: Hafner Press, 1975. 295 p.
  12. Feyissa T., Nybom H., Bartish I. V., Welander M. Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers // Genet. Resour. Crop Evol. 2007. V. 54. P. 947–958. https://doi.org/10.1007/s10722-006-9155-8
  13. Friis I. Zonation of the forest vegetation on the south slopes of Bale Mountains, South Ethiopia // Sinet: Ethiopian Journal of Science. 1986. Suppl. 9. P. 29–44.
  14. Geeraert L., Aerts R., Jordaens K., Dox I., Wellens S., Couri M., Berecha G., Honnay O. Intensification of Ethiopian coffee agroforestry drives impoverishment of the Arabica coffee flower visiting bee and fly communities // Agrofor. Syst. 2019. V. 93. P. 1729–1739. https://doi.org/10.1007/s10457-018-0280-0
  15. Gil-Romera G., Adolf C., Benito B. M., Bittner L., Johansson M. U., Grady D. A., Lamb H. F., Lemma B., Fekadu M., Glaser B., Mekonnen B., Sevilla-Callejo M., Zech M., Zech W., Miehe G. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia // Biol Lett. 2019. V. 15. № 7. 20190357. https://doi.org/10.1098/rsbl.2019.0357
  16. Githumbi E. N. Holocene environmental and human interactions in East Africa: PhD Thesis. York: University of York, 2017. 213 p.
  17. Gosling W. D., Miller C. S., Livingstone D. A. Atlas of the tropical West African pollen flora // Rev. Palaeobot. Palynol. 2013. V. 199. P. 1–135. https://doi.org/10.1016/j.revpalbo.2013.01.003
  18. Grimm E. C. TGView [software]. Ver. 2.0.2. Illinois State Museum, Springfield, 2004.
  19. Hamilton A. C. Environmental history of East Africa. A Study of the Quaternary. London: Acad. Press, 1982. 328 p.
  20. Haselhorst D. S., Moreno J. E., Punyasena S. W. Assessing the influence of vegetation structure and phenological variability on pollen-vegetation relationships using a 15-year Neotropical pollen rain record // J Veg Sci. 2020. V. 31. P. 606–615. https://doi.org/10.1111/jvs.12897
  21. Hedberg O. Altitudinal zonation of the vegetation on the East African Mountains // Bot. J. Linn. Soc. Botany. 1955. V. 165. № 2. P. 134–136. https://doi.org/10.1111/j.1095-8312.1955.tb00730.x
  22. Hicks S., Ammann B., Latalowa M., Pardoe H. S., Tinsley H. European Pollen Monitoring Programme. Project description and Guidelines. Oulu: Oulu University Press, 1996. 28 p.
  23. Hicks S., Hyvärinen H. Pollen influx values measured in different sedimentary environments and their palaeoecological implications // Grana. 1999. V.38. №4. P. 228–242. https://doi.org/10.1080/001731300750044618
  24. Hillman J. C. The Bale Mountains National Park area, Southeast Ethiopia, and its management // Mt. Res. Dev. 1988. V. 8. № 2–3. P. 253–258. https://doi.org/10.2307/3673456
  25. Jantz N., Homeier J., León-Yánez S., Moscoso A., Behling H. Trapping pollen in the tropics – comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones // Rev. Palaeobot. Palynol. 2013. V. 193. P. 57–69. https://doi.org/10.1016/j.revpalbo.2013.01.011
  26. Julier A. C.M., Jardine P. E., Adu-Bredu S., Coe A. L., Fraser W. T., Lomax B. H., Malhi Y., Moore S., Gosling W. D. Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa // Grana. 2019. V. 58. № 1. P. 45–62. https://doi.org/10.1080/00173134.2018.1510027
  27. Julier A. C.M., Manzano S., Razanatsoa E., Razafimanantsoa A. H.I. Modern pollen studies from tropical Africa and their use in palaeoecology // Quaternary vegetation dynamics – the African Pollen Database. Ed. Runge J. Leiden: CRC Press; 2021. P. 317–348. https://doi.org/10.1201/9781003162766-21
  28. Kershaw A. P., Strickland K. M. A 10 year pollen trapping record from rainforest in northeastern Queensland, Australia // Rev. Palaeobot. Palynol. 1990. V. 64. № 1–4. P. 281-288. https://doi.org/10.1016/0034-6667(90)90143-7
  29. Kidane Y., Stahlmann R., Beierkuhnlein C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia // Environ. Monit. Assess. 2012. V. 184. P. 7473–7489. https://doi.org/10.1007/s10661-011-2514-8
  30. Kuzmicheva EA., Debella H. J., Khasanov B. F., Krylovich O. A., Girmay W., Vasyukov D. D., Yirga S., Savinetsky A. B. Ecosystems` history of the Bale Mountains // Ethiopian Journal of Biological Sciences. 2017. V. 16. P. 61–94.
  31. Kuzmicheva E. A., Khasanov B. F., Krylovich O. A., Debella H. J., Worku W. G., Yirga S., Savinetsky A. B. Vegetation and climate history of the Harenna Forest (Bale Mountains, Ethiopia) in the Holocene // Biol. Bull. 2018. V. 45. № 6. P. 537–548. https://doi.org/10.1134/S1062359018060067
  32. Lisitsyna O. V., Hicks S., Huusko A. Do moss samples, pollen traps and modern lake sediments all collect pollen in the same way? A comparison from the forest limit area of northernmost Europe // Veg. Hist. Archaeobot. 2012. V. 21. P. 187–199. https://doi.org/10.1007/s00334-011-0335-x
  33. Magri D., Di Rita F. Archaeopalynological preparation techniques // Plant microtechniques and protocols / Eds Yeung E. C.T., Stasolla C., Sumner M. J., Huang B. G. New York: Springer, 2015. P. 495–506. https://doi.org/10.1007/978-3-319-19944-3_27
  34. Martin A. C., Harvey W. J. The Global Pollen Project: a new tool for pollen identification and the dissemination of physical reference collections // Methods Ecol Evol. 2017. V. 8. P. 892–897. https://doi.org/10.1111/2041-210X.12752
  35. Matthias I., Semmler M. S.S., Giesecke T. Pollen diversity captures landscape structure and diversity // J. Ecol. 2015. V. 103. P. 880–890. https://doi.org/10.1111/1365-2745.12404
  36. Messerli B., Winiger M. Climate, environmental change and resources of the African mountains from the Mediterranean to the Equator // Mt. Res. Dev. 1992. V. 12. № 4. P. 315–336. https://doi.org/10.2307/3673683
  37. Miehe S., Miehe G. Ericaceous forests and heathlands in the Bale Mountains of South Ethiopia: ecology and man’s impact. Hamburg: T. Warnke, 1994. 206 p.
  38. Mohammed M. U., Bonnefille R. A late Glacial/late Holocene pollen record from a highland peat at Tamsaa, Bale Mountains, south Ethiopia // Glob. Planet. Change. 1998. V. 16–17. P. 121–129. https://doi.org/10.1016/S0921-8181(98)00025-3
  39. Montagna T., Silva J. Z., Pikart T. G., Reis M. S. Reproductive ecology of Ocotea catharinensis, an endangered tree species // Plant Biol. 2018. V. 20. 5. P. 926–-935. https://doi.org/10.1111/plb.12847
  40. Moore P. D., Webb J. A., Collison M. E. Pollen analysis. 2nd Edition. Oxford: Blackwell, 1991. 216 p.
  41. Negash L. A selection of African native trees: biology, uses, propagation and restoration techniques. Addis Ababa, 2021. 621 p.
  42. Niemann H., Brunschön C., Behling H. Vegetation/modern pollen rain relationship along an altitudinal transect between 1920 and 3185 m a.s.l. in the Podocarpus National Park region, southeastern Ecuadorian Andes // Rev. Palaeobot. Palynol. 2010. V. 159. P. 69–80. https://doi.org/10.1016/j.revpalbo.2009.11.001
  43. Orwa C., Mutua A., Kindt R., Jamnadass R., Anthony S. Syzygium guineense (Willd.) DC. // Agroforestry Database: A Tree Reference and Selection Guide, Version 4.0. 2009. 5 p.
  44. PalDat – Palynological Database. 2000. URL: https://www.paldat.org/
  45. Page J. S. A scanning electron microscope survey of grass pollen // Kew Bull. 1978. V. 32. № 2. P. 313–319. https://doi.org/10.2307/4117102
  46. Pattemore D. E. Pollination // Encyclopedia of applied plant sciences. 2nd ed. / Eds Thomas B., Murray B. G., Murphy D. J. Amsterdam: Elsevier, 2017. P. 309–320. https://doi.org/10.1016/B978-0-12-394807-6.00044-7
  47. Pereira Nunes C. E., Vallejo-Marín M. How much pollen do beelike floral vibrations remove from different types of anthers? // Int. J. Plant Sci. 2022. V. 183. № 9. P. 768–776. https://doi.org/10.1086/722296
  48. Raju A. J.S., Krishna J. R., Chandra P. H. Reproductive ecology of Syzygium alternifolium (Myrtaceae) an endemic and endangered tropical tree species in the southern Eastern Ghats of India // Journal of Threatened Taxa. 2014. V. 6. № 9. P. 6153–6171. https://doi.org/10.11609/JoTT.o3768.6153-71
  49. Reille M. Pollen et spores d’Europe et d’Afrique du Nord. Suppl. 2. Marseille: Laboratoire de Botanique historique et Palynologie, 1998. 525 p.
  50. Sattarian A. Contribution to the biosystematics of Celtis L. (Celtidaceae) with special emphasis on the African species. Ph.D. dissertation. Wageningen: Wageningen Universiteit, 2006. 142 P. https://doi.org/10.18174/121819
  51. Schüler L., Hemp A., Behling H. Relationship between vegetation and modern pollen-rain along an elevational gradient on Kilimanjaro, Tanzania // Holocene. 2014. V. 24. № 6. P. 702–713. https://doi.org/10.1177/0959683614526939
  52. Schüler L., Hemp A. Atlas of pollen and spores and their parent taxa of Mt Kilimanjaro and tropical East Africa // Quat. Int. 2016. V. 425. P. 301–386. https://doi.org/10.1016/j.quaint.2016.07.038
  53. Sertse D., Disasa T., Bekele K., Alebachew M., Kebede Y., Eshete N., Eshetu S. Mass flowering and death of bamboo: a potential threat to biodiversity and livelihoods in Ethiopia // J. Bio. Env. Sci. 2011. V. 1. № 5. P. 16–25.
  54. Severova E. E., Nilova M. V., Devyatov A. G., Volkova O. A., Mayorov S. R., Polevova S. V., Platonova A. G., Rudko A. I., Filin V. R., Firnin D. M. Botany-collection.bio.msu.ru: information system on plant morphology and anatomy // Moscow Univ. Biol. Sci. Bull. 2016. V. 71. P. 126–127. https://doi.org/10.3103/S0096392516030111
  55. Stockmarr J. Determination of spore concentration with an electronic particle counter // Geological Survey of Denmark Yearbook. 1973. V. 1972. P. 87–89.
  56. Tauber H. A static non‐overload pollen collector // NewPhytol. 1974. V. 73. № 2. P. 359–369. https://doi.org/10.1111/j.1469-8137.1974.tb04770.x
  57. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV // Bot. J. Linn. Soc. 2016. V. 181. № 1. P. 1–20. https://doi.org/10.1111/boj.12385
  58. Tomlinson P. B., Braggins J. E., Rattenbury J. A. Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism // Am. J. Bot. 1991. V. 78. № 9. P. 1289–1303. https://doi.org/10.2307/2444932
  59. Uhlig S. K. Mountain forests and the upper tree limit on the Southeastern Plateau of Ethiopia // Mt. Res. Dev. 1988. V. 8. № 2–3. P. 227–234. https://doi.org/10.2307/3673452
  60. Uhlig S. K., Uhlig K. Studies on the altitudinal zonation of forests and alpine plants in the central Bale Mountains, Ethiopia // Mt. Res. Dev. 1991. V. 11. № 2. P. 153–156. https://doi.org/10.2307/3673574
  61. Umer M., Lamb H. F., Bonnefille R., Lézine A. M., Tiercelin J. J., Gibert E., Cazet J. P., Watrin J. Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia // Quat. Sci. Rev. 2007. V. 26. № 17–18. P. 2229–2246. https://doi.org/10.1016/j.quascirev.2007.05.004
  62. Verlhac L., Izumi K., Lézine A. M., Lemonnie, K., Buchet G., Achoundong G., Tchiengué B. Altitudinal distribution of pollen, plants and biomes in the Cameroon highlands // Rev. Palaeobot. Palynol. 2018. V. 259. P. 21–28. https://doi.org/10.1016/j.revpalbo.2018.09.011
  63. Woldu Z., Feoli E., Nigatu L. Partitioning an elevation gradient of vegetation from Southeastern Ethiopia by probabilistic methods // Vegetatio. 1989. V. 81. № 1–2. P. 189–198. https://doi.org/10.1007/BF00045524
  64. Wubie A. J., Bezabeh A., Kebede K. Floral phenology and pollen potential of honey bee plants in North-East dry land areas of Amhara region, Ethiopia // Journal of Agriculture and Veterinary Science. 2014. V. 7. № 5. P. 36–49. https://doi.org/10.9790/2380-07513649

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a modified Behling pollen trap exposed in the Bale Mountains, Ethiopia for 1 year (adapted from Jantz et al., 2013).

Download (470KB)
3. Fig. 2. a) Schematic profile of the Bale Mountains, oriented in the southwest–northeast direction, indicating the location of pollen traps (adapted from Miehe, Miehe, 1994); b) Map of the study area and the location of pollen traps. CAS – hackberry-Afrocarp forest with Coffea arabica; PSS – mid-mountain forest with a predominance of Syzygium and Pouteria; BS – bamboo belt with a predominance of Oldeania alpina; AA – Afro-alpine high mountain belt; EN – heather belt; HJN – Hagenia-juniper forest; AJN – Afrocarp-juniper forest with Hagenia abyssinica.

Download (1MB)
4. Fig. 3. The most common and undetermined palynotypes found in modified Behling pollen traps exposed in the Bale Mountains (Ethiopia) for one year. 1–2 – Afrocarpus, 3 – Cupressaceae, 4 – Ericaceae, 5–6 – Sapindaceae, 7–8 – Hagenia, 9–10 – Asteraceae (Asteroideae), 11–12 – Oleaceae, 13 – Poaceae, 14–15 – Hypericum, 16–17 – Macaranga, 18–19 – Nuxia, 20 – Urticaceae, 21 – Syzygium, 22–23 – PT 17161, 24 – PT191611, 25 – PT191616, 26 – PT211621.

Download (732KB)
5. Fig. 4. Percentage diagram of dominant palynotypes in the spectra of modern pollen rain in different plant communities of the Bale Mountains. Palynotypes with a content of less than or equal to 2% are marked with a circle. AP/NAP is the ratio of pollen content of woody (AP) and non-woody (NAP) palynotypes. CAS is afrocarp hackberry forest with Coffea arabica; PSS is a mid-mountain forest with a predominance of Syzygium and Pouteria; BS is a bamboo belt with a predominance of Oldeania alpina; AA is an afroalpine high-mountain belt; EN is a heather belt; HJN is a hagenia-juniper forest; AJN is an afrocarp-juniper forest with Hagenia abyssinica.

Download (478KB)
6. Fig. 5. Diagram of pollen accumulation rates of dominant palynotypes in the spectra of modern pollen rain in different plant communities of the Bale Mountains (p.z. cm-2 year-1) (values ​​are reduced by 100 times). CAS – hackberry-Afrocarp forest with Coffea arabica; PSS – mid-mountain forest with prevalence of Syzygium and Pouteria; BS – bamboo belt with prevalence of Oldeania alpina; AA – Afro-alpine high-mountain belt; EN – heather belt; HJN – Hagenia-juniper forest; AJN – Afrocarp-juniper forest with Hagenia abyssinica.

Download (887KB)
7. Fig. 6. Total pollen accumulation rate (p.s. cm–2 year–1). CAS – Afrocarp hackberry forest with Coffea arabica; PSS – mid-mountain forest with prevalence of Syzygium and Pouteria; BS – bamboo belt with prevalence of Oldeania alpina; AA – Afroalpine high-mountain belt; EN – heather belt; HJN – Hagenia-juniper forest; AJN – Afrocarp-juniper forest with Hagenia abyssinica.

Download (177KB)

Copyright (c) 2025 Russian Academy of Sciences