Bioinformatic and behavioral analysis of Pannexin 1 involvement in cutaneous perception in mice
- Authors: Kiryukhina O.O.1, Tarasova O.S.2,3, Panchin Y.V.1,4
-
Affiliations:
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Institute of Biomedical Problems, Russian Academy of Sciences
- Moscow State University named after M.V. Lomonosov
- Research Institute of Physical Chemistry and Biology named after A.N. Belozersky
- Issue: No 5 (2025)
- Pages: 572–579
- Section: ФИЗИОЛОГИЯ ЖИВОТНЫХ И ЧЕЛОВЕКА
- URL: https://cardiosomatics.ru/1026-3470/article/view/689903
- DOI: https://doi.org/10.31857/S1026347025050086
- ID: 689903
Cite item
Abstract
To reveal new functions of pannexin 1 in the mouse nervous system, cell types with the most pronounced expression of the gene encoding this protein were identified by bioinformatic analysis. It turned out that sensory neurons PSNP3 and PSNP6 of the dorsal root ganglia have the highest expression levels of Panx1, as well as high expression of purinoreceptor p2rx3, and other genes associated with the perception of pain and skin itch. The scratch reflex induced by compound 48/80 was suppressed in Panx1 knockout mice compared to wild-type mice, confirming the involvement of Panx1 in the purinergic regulation of sensory nerve fibers responsible for itch perception.
Full Text

About the authors
O. O. Kiryukhina
A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Author for correspondence.
Email: kcyu@yandex.ru
Russian Federation, Bolshoy Karetny pereulok, 19, building 1, Moscow, 127051 Russia
O. S. Tarasova
Institute of Biomedical Problems, Russian Academy of Sciences; Moscow State University named after M.V. Lomonosov
Email: kcyu@yandex.ru
Russian Federation, Khoroshevskoe shosse, 76A, Moscow, 123007; Lomonosovsky Prospekt, 27, Bldg. 1, Moscow, 119991
Yu. V. Panchin
A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences; Research Institute of Physical Chemistry and Biology named after A.N. Belozersky
Email: kcyu@yandex.ru
Russian Federation, Bolshoy Karetny pereulok, 19, building 1, Moscow, 127051; Leninskie Gory, 1, Bldg. 40, Moscow, 119234 Russia
References
- Battulin N., Kovalzon V. M., Korablev A., Serova I., Kiryukhina O. O., Pechkova M. G., Bogotskoy K. A., Tarasova O. S., Panchin Y. Pannexin 1 transgenic mice: human diseases and sleep-wake function revision // Int. J. Mol. Sci. 2021. V. 22. № 10. P. 5269. https://doi.org/10.3390/ijms22105269
- Broccardo M., Erspamer V., Falconieri Erspamer G., Improta G., Linari G., Melchiorri P., Montecucchi P. C. Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin // Br. J. Pharmacol. 1981. V. 73. № 3. P. 625–31. https://doi.org/10.1111/j.1476-5381.1981.tb16797.x
- Burnstock G. Discovery of purinergic signalling, the initial resistance and current explosion of interest // Br. J. Pharmacol. 2012. V. 167. № 2. P. 238–255. https://doi.org/10.1111/j.1476-5381.2012.02008.x
- Chen C. C., Akopian A. N., Sivilotti L., Colquhoun D., Burnstock G., Wood J. N. A P2X purinoceptor expressed by a subset of sensory neurons // Nature. 1995. V. 377. № 6548. P. 428–31. https://doi.org/10.1038/377428a0
- Chiu Y. H., Schappe M. S., Desai B. N., Bayliss D. A. Revisiting multimodal activation and channel properties of Pannexin 1 // Journal of General Physiology. 2018. V. 150. № 1. P. 19–39. https://doi.org/10.1085/jgp.201711888
- Cranfill S. L., Luo W. The development of somatosensory neurons: Insights into pain and itch // Curr Top Dev Biol. 2021. V. 142 P. 443-475. https://doi.org/10.1016/bs.ctdb.2020.10.005
- Dahl G. ATP release through pannexon channels // Philosophical Transactions of the Royal Society B Biological Sciences. 2015. V. 370. № 1672. P. 20140191. https://doi.org/10.1098/rstb.2014.0191
- Guo C., Jiang H., Huang C. C., Li F., Olson W., Yang W., Fleming M., Yu G., Hoekel G., Luo W., Liu Q. Pain and itch coding mechanisms of polymodal sensory neurons // Cell Rep. 2023. V. 42. № 11. P. 113316. https://doi.org/10.1016/j.celrep.2023.113316
- Hung S. C., Choi C. H., Said-Sadier N., Johnson L., Atanasova K. R., Sellami H., Yilmaz Ö., Ojcius D. M. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation // PLoS One. 2013. V. 8. № 7. P. e70210. https://doi.org/10.1371/journal.pone.0070210
- Iglesias R., Locovei S., Roque A., Alberto A. P., Dahl G., Spray D. C., Scemes E. P2X7 receptor-Pannexin1 complex: pharmacology and signaling // Am J Physiol Cell Physiol. 2008. V. 295. № 3. P. C752–60. https://doi.org/10.1152/ajpcell.00228.2008
- Inoue K. The Role of ATP Receptors in Pain Signaling // Neurochem Res. 2022. V. 47. № 9. P. 2454–2468. https://doi.org/10.1007/s11064-021-03516-6
- Kittaka H., Tominaga M. The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin // Allergol Int. 2017. V. 66. № 1. P. 22–30. https://doi.org/10.1016/j.alit.2016.10.003
- Liu Q., Sikand P., Ma C., Tang Z., Han L., Li Z., Sun S., LaMotte R.H., Dong X. Mechanisms of itch evoked by β-alanine // J Neurosci. 2012. V. 32, № 42. P. 14532-7. doi: 10.1523/JNEUROSCI.3509-12.2012
- McAllister B.B., Stokes-Heck S., Harding E. K., van den Hoogen N. J., Trang T. Targeting Pannexin-1 Channels: Addressing the ‘Gap’ in Chronic Pain // CNS Drugs. 2024. V. 38. № 2. P. 77–91. https://doi.org/10.1007/s40263-024-01061-8
- Mishra S. K., Hoon M. A. The cells and circuitry for itch responses in mice // Science. 2013. V. 340. № 6135. P. 968–71. https://doi.org/10.1126/science.1233765
- Nocchi L., Roy N., D’Attilia M., Dhandapani R., Maffei M., Traista A., Castaldi L., Perlas E., Chadick C. H., Heppenstall P. A. Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice // Nat Biomed Eng. 2019. V. 3. № 2. P. 114–125. https://doi.org/10.1038/s41551-018-0328-5
- Panchin Y., Kelmanson I., Matz M., Lukyanov K., Usman N., Lukyanov S. A. Ubiquitous family of putative gap junction molecules // Current Biology. 2000. V. 10. № 12. P. R473–474. https://doi.org/10.1016/s0960-9822(00)00576-5
- Pelegrin P., Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor // MBO J. 2006. V. 25. № 21. P. 5071–82. https://doi.org/10.1038/sj.emboj.7601378
- Ralevic V., Burnstock G. Receptors for purines and pyrimidines // Pharmacological Reviews. 1998. V. 50. № 3. P. 413–492.
- Schemann M., Kugler E. M., Buhner S., Eastwood C., Donovan J., Jiang W., Grundy D. The mast cell degranulator compound 48/80 directly activates neurons // PLoS One. 2012. V. 7. № 12. P. e52104. https://doi.org/10.1371/journal.pone.0052104
- Shao Q., Lindstrom K., Shi R., Kelly J., Schroeder A., Juusola J., Levine K. L., Esseltine J. L., Penuela S., Jackson M. F., Laird D. W. A germline variant in the PANX1 gene has reduced channel function and is associated with multisystem dysfunction // Journal of Biological Chemistry. 2016. V. 291. № 24. P. 12432–12443. https://doi.org/10.1074/jbc.M116.717934
- Shiratori-Hayashi M., Hasegawa A., Toyonaga H., Andoh T., Nakahara T., Kido-Nakahara M., Furue M., Kuraishi Y., Inoue K., Dong X., Tsuda M. Role of P2X3 receptors in scratching behavior in mouse models // J Allergy Clin Immunol. 2019. V. 143. № 3. P. 1252–1254. https://doi.org/10.1016/j.jaci.2018.10.053
- Sun Y. G., Zhao Z. Q., Meng X. L., Yin J., Liu X. Y., Chen Z. F. Cellular basis of itch sensation // Science. 2009. V. 325. № 5947 P. 1531–4. https://doi.org/10.1126/science.1174868
- Tansey E. A., Johnson C. D. Recent advances in thermoregulation // Adv Physiol Educ. 2015. V. 39, № 3. P. 139–48. https://doi.org/10.1152/advan.00126.2014
- Uchida H., Nagai J., Ueda H. Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice // Mol Pain. 2014. 10:71. https://doi.org/10.1186/1744-8069-10-71
- Wang W., Qu R., Dou Q., Wu F., Wang W., Chen B., Mu J., Zhang Z., Zhao L., Zhou Z., Dong J., Zeng Y., Liu R., Du J., Zhu S., Li Q., He L., Jin L., Wang L., Sang Q. Homozygous variants in PANX1 cause human oocyte death and female infertility // Eur J Hum Genet. 2021. V. 29. № 9. P. 1396–1404. https://doi.org/10.1038/s41431-020-00807-4
- Zeisel A., Hochgerner H., Lönnerberg P., Johnsson A., Memic F., van der Zwan J., Häring M., Braun E., Borm L. E., La Manno G., Codeluppi S., Furlan A., Lee K., Skene N., Harris K. D., Hjerling-Leffler J., Arenas E., Ernfors P., Marklund U., Linnarsson S. Molecular Architecture of the Mouse Nervous System // Cell. 2018. V. 174. № 4. P. 999–1014. https://doi.org/10.1016/j.cell.2018.06.021
- Zhang Y., Laumet G., Chen S. R., Hittelman W. N., Pan H. L. Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development // J Biol Chem. 2015. V. 290. № 23. P. 14647–55. https://doi.org/10.1074/jbc.M115.650218
Supplementary files
