A simple method for morphological assessment of astrocytes: sexual dimorphism in the maturation dynamics of astrocytes in the rat amygdala
- Autores: Manolova А.O.1, Lazareva N.A.1, Paramonova A.E.1, Kvichansky A.А.1, Odrinskaya М.S.1, Stepanichev M.Y.1, Gulyaeva N.V.1
- 
							Afiliações: 
							- Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
 
- Edição: Volume 41, Nº 3 (2024)
- Páginas: 294-301
- Seção: МЕТОДЫ
- URL: https://cardiosomatics.ru/1027-8133/article/view/653894
- DOI: https://doi.org/10.31857/S1027813324030092
- EDN: https://elibrary.ru/EPZFTX
- ID: 653894
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Simple, affordable and reliable methods for assessing the status of brain structures maturation are vital for preclinical studies related to the effects of early-life stress. These methods make it possible to evaluate the effectiveness of specific therapies or the prevention of stress-related pathological changes. The morphology of astrocytes is one of the markers representing functional state of synapses and thus it is indicative of maturation state of neuronal networks. We performed the method for evaluating the morphological characteristics of astrocytes using epifluorescence microscopy and the ImageJ program. Application of the method to brain sections of rats on postnatal days 18 and 30 revealed the dynamics of morphological changes in the astrocytes of the basolateral nucleus of the amygdala during normal ontogenesis. The proposed method makes it possible to evaluate not only the density of the cell population, but also their morphological parameters associated with the degree of branching and the length of the astrocyte processes. The approach used revealed sexual dimorphism in the ontogenesis: the length of the astrocytic processes increased during maturation from juvenile to pubertal period in the basolateral nucleus of the amygdala only in female rats, but not in males.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
А. Manolova
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
							Autor responsável pela correspondência
							Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
N. Lazareva
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Paramonova
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Kvichansky
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
М. Odrinskaya
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
M. Stepanichev
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
N. Gulyaeva
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
														Email: anna.manolova@ihna.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Dennison M., Whittle S., Yücel M., Vijayakumar N., Kline A., Simmons J., Allen N.B. // Dev. Sci. 2013. V. 16. P. 772–791. doi: 10.1111/desc.12057.
- Fish A.M., Nadig A., Seidlitz J., Reardon P.K., Mankiw C., McDermott C.L., Blumenthal J.D., Clasen L.S., Lalonde F., Lerch J.P., Chakravarty M.M., Shinohara R.T., Raznahan A. // NeuroImage. 2020. V. 204. P. 116122. doi: 10.1016/j.neuroimage.2019.116122.
- Verwer R.W.H., Van Vulpen E.H.S., Van Uum J.F.M. // J. Comp. Neurol. 1996, 376, 75–96. doi: 10.1002/(SICI)1096-9861(19961202)376:1<75::AID-CNE5>3.0.CO,2-L.
- Arruda-Carvalho M., Wu W.-C., Cummings K.A., Clem R.L. // J. Neurosci. 2017. V. 37. P. 2976–2985. doi: 10.1523/JNEUROSCI.3097-16.2017.
- Wierenga L.M., Bos M.G.N., Schreuders E., Vd Kamp F., Peper J.S., Tamnes C.K., Crone E.A. // Psychoneuroendocrinology. 2018. V. 91. P. 105–114. doi: 10.1016/j.psyneuen.2018.02.034.
- Frere P.B., Vetter N.C., Artiges E., Filippi I., Miranda R., Vulser H., Paillère-Martinot M.-L., Ziesch V., Conrod P., Cattrell A., Walter H., Gallinat J., Bromberg U., Jurk S., Menningen E., Frouin V., Papadopoulos Orfanos D., Stringaris A., Penttilä J., Van Noort B., Grimmer Y., Schumann G., Smolka M.N., Martinot J.-L., Lemaître H. // NeuroImage. 2020. V. 210. P. 116441. doi: 10.1016/j.neuroimage.2019.116441.
- Simerly R.B., Swanson L.W., Chang C., Muramatsu M. // J. Comp. Neurol. 1990. V. 294. P. 76–95. doi: 10.1002/cne.902940107.
- Cahill L., Uncapher M., Kilpatrick L., Alkire M.T., Turner J. // Learn. Mem. 2004. V. 11. P. 261–266. doi: 10.1101/lm.70504.
- Cooke B.M., Stokas M.R., Woolley C.S. // J. Comp. Neurol. 2007. V. 501. P. 904–915. doi: 10.1002/cne.21281.
- Kilpatrick L.A., Zald D.H., Pardo J.V., Cahill L.F. // NeuroImage. 2006. V. 30. P. 452–461. doi: 10.1016/j.neuroimage.2005.09.065.
- Clarke L.E., Barres B.A. // Nat. Rev. Neurosci. 2013. V. 14. P. 311–321. doi: 10.1038/nrn3484.
- Nägler K., Mauch D.H., Pfrieger F.W. // J. Physiol. 2001. V. 533. P. 665–679. doi: 10.1111/j.1469-7793.2001.00665.x.
- Pfrieger F.W., Barres B.A. // Science. 1997. V. 277. P. 1684–1687. doi: 10.1126/science.277.5332.1684.
- Johnson R.T., Breedlove S.M., Jordan C.L. // Astrocytes in the Amygdala / In Vitamins & Hormones. Elsevier, 2010. Vol. 82. P 23–45. doi: 10.1016/S0083-6729(10.82002-3.
- Mong J.A., Kurzweil R.L., Davis A.M., Rocca M.S., McCarthy M.M. // Horm. Behav. 1996. V. 30. P. 553–562. doi: 10.1006/hbeh.1996.0058.
- Milner T.A., McEwen B.S., Hayashi S., Li C.J., Reagan L.P., Alves S.E. // J. Comp. Neurol. 2001. V. 429. P. 355–371.
- Johnson R.T., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2013. V. 521. P. 2298–2309. doi: 10.1002/cne.23286.
- Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. // Front. Neuroanat. 2015. V. 9. doi: 10.3389/fnana.2015.00161.
- Paxinos G., Watson C. // The Rat Brain in Stereotaxic Coordinates, 3. ed. / Academic Press: San Diego, Calif., 1997.
- Martinez F.G., Hermel E.E.S., Xavier L.L., Viola G.G., Riboldi J., Rasia-Filho A.A., Achaval M. // Brain Res. 2006. V. 1108. P. 117–126. doi: 10.1016/j.brainres.2006.06.014.
- Conejo N.M., González‐Pardo H., Cimadevilla J.M., Argüelles J.A., Díaz F., Vallejo‐Seco G., Arias J.L. // J. Neurosci. Res. 2005. V. 79. P. 488–494. doi: 10.1002/jnr.20372.
- Immenschuh J., Thalhammer S.B., Sundström-Poromaa I., Biegon A., Dumas S., Comasco E. // Biol. Sex Differ. 2023. V. 14. P. 54. doi: 10.1186/s13293-023-00541-8.
- Brenner M., Messing A. // ASN Neuro. 2021. V. 13. P. 175909142098120. doi: 10.1177/1759091420981206.
- Khan M.M., Hadman M., Wakade C., De Sevilla L.M., Dhandapani K.M., Mahesh V.B., Vadlamudi R.K., Brann D.W. // Endocrinology. 2005. V. 146. P. 5215–5227. doi: 10.1210/en.2005-0276.
- Elmariah S.B., Hughes E.G., Oh E.J., Balice-Gordon R.J. // Neuron Glia Biol. 2004. V. 1. P. 339–349. doi: 10.1017/S1740925X05000189.
- Bushong E.A., Martone M.E., Jones Y.Z., Ellisman M.H. // J. Neurosci. 2002. V. 22. P. 183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002.
- Reeves A.M.B., Shigetomi E., Khakh B.S. // J. Neurosci. 2011. V. 31. P. 9353–9358. doi: 10.1523/JNEUROSCI.0127-11.2011.
- Bondi H., Bortolotto V., Canonico P.L., Grilli M. // Neurobiol. Aging. 2021. V. 100. P. 59–71. doi: 10.1016/j.neurobiolaging.2020.12.018.
- Tavares G., Martins M., Correia J.S., Sardinha V.M., Guerra-Gomes S., Das Neves S.P., Marques F., Sousa N., Oliveira J.F. // Brain Struct. Funct. 2017. V. 222. P. 1989–1999. doi: 10.1007/s00429-016-1316-8.
- Baldwin K.T., Murai K.K., Khakh B.S. // Trends Cell Biol. 2023. S0962892423002040. doi: 10.1016/j.tcb.2023.09.006.
- Nedergaard M., Ransom B., Goldman S.A. // Trends Neurosci. 2003. V. 26. P. 523–530. doi: 10.1016/j.tins.2003.08.008.
- Krebs-Kraft D.L., Hill M.N., Hillard C.J., McCarthy M.M. // Proc. Natl. Acad. Sci. 2010. V. 107. P. 20535–20540. doi: 10.1073/pnas.1005003107.
- Mohr M.A., Michael N.S., DonCarlos L.L., Sisk C.L. // Dev. Cogn. Neurosci. 2022. V. 57. P. 101141. doi: 10.1016/j.dcn.2022.101141.
- Johnson R.T., Schneider A., DonCarlos L.L., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2012. V. 520. P. 2531–2544. doi: 10.1002/cne.23061.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


