Ciliary neurotrophic factor as a potential biomarker of cerebral pathologies
- Autores: Gudkova A.A.1
- 
							Afiliações: 
							- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department
 
- Edição: Volume 41, Nº 1 (2024)
- Páginas: 55-61
- Seção: Review Articles
- URL: https://cardiosomatics.ru/1027-8133/article/view/653909
- DOI: https://doi.org/10.31857/S1027813324010071
- EDN: https://elibrary.ru/GYYOWN
- ID: 653909
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Ciliary neurotrophic factor (CNTF) is a pluripotent neurotrophic factor with high neuroprotective potential, a neurocytokine that has demonstrated potential in the therapy of neurodegenerative, psychiatric and metabolic diseases. Preclinical data support the general concept of its potential neuroprotective and trophic effects, and recent clinical data support the potential role of CNTF in the treatment of neurodegeneration and obesity. A number of data indicate the involvement of CNTF in stress reactivity and the pathogenesis of affective disorders. Data from studies of CNTF levels in invasive (blood) and non-invasive (tears) human biomaterials suggest the possibility of its use as a biomarker for certain brain diseases, although more research is needed to confirm this.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Gudkova
Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department
							Autor responsável pela correspondência
							Email: gudkov_ann@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Guo H., Chen P., Luo R., Zhang Y., Xu X., Gou X. // Protein Pept. Lett. 2022. V. 29. P. 815–828. doi: 10.2174/0929866529666220905105800.
- Stansberry W.M., Pierchala B.A. // Front. Mol. Neurosci. 2023. V. 16. 1238453. doi: 10.3389/fnmol.2023.1238453.
- Pasquin S., Sharma M., Gauchat J.F. // Cytokine Growth Factor Rev. 2015. V. 26. P. 507–515. doi: 10.1016/j.cytogfr.2015.07.007.
- Fuhrmann S., Grabosch K., Kirsch M., Hofmann H.D. // J. Comp. Neurol. 2003. V. 461. P. 111–122. doi: 10.1002/cne.10701.
- Rose-John S. //Cold Spring Harb. Perspect. Biol. 2018. V. 10. a028415. doi: 10.1101/cshperspect.a028415.
- Pasquin S., Sharma M., Gauchat J.F. // Cytokine. 2016. V. 82. P. 122–124. doi: 10.1016/j.cyto.2015.12.019.
- Neet K.E., Campenot R.B. // Cell. Mol. Life Sci. 2001. V. 58. P. 1021–1035. doi: 10.1007/PL00000917.
- Acheson A., Lindsay R.M. // Seminars in Neuroscience.1994. V. 6. P. 333–341. https://doi.org/10.1006/smns.1994.1042.
- Fargali S., Sadahiro M., Jiang C., Frick A.L., Indall T., Cogliani V., Welagen J., Lin W.J. Salton S.R. // J. Mol. Neurosci. 2012. V. 48. P. 654–9. doi: 10.1007/s12031-012-9790-9.
- Jablonka S., Dombert B., Asan E., Sendtner M. // J. Anat. 2014. V. 224. P. 3–14. doi: 10.1111/joa.12097.
- Emerich D.F., Thanos C.G. // Curr. Gene Ther. 2006. V. 6. P. 147–59. doi: 10.2174/156652306775515547.
- Zhou Y., Zhai S., Yang W. // Zhonghua Er Bi Yan Hou Ke Za Zhi. 1999. V. 34. P. 150–3. PMID: 12764805.
- Sleeman M.W., Anderson K.D., Lambert P.D., Yancopoulos G.D., Wiegand S.J. // Pharm. Acta. Helv. 2000. V. 74. P. 265–272. doi: 10.1016/s0031-6865(99)00050-3.
- Buzas B., Symes A.J., Cox B.M. // J. Neurochem. 1999. V. 72. P. 1882–9. doi: 10.1046/j.1471-4159.1999.0721882.x
- Fantuzzi G., Benigni F.M., Sironi M., Conni M., Carelli L., et al. // Cytokine. 1995. V. 7. P. 150–156.
- Hudgins S.N., Levison S.W. // Exp Neurol. 1998. V. 150. P. 171–182. doi: 10.1006/exnr.1997.6735.
- Mori M., Jefferson J.J., Hummel M., Garbe D.S. // J. Neurosci. 2008. V. 28. P. 5867–5869. doi: 10.1523/JNEUROSCI.1782-08.2008.
- Pierce R.C., Bari A.A. // Rev. Neurosci. 2001. V. 12. P. 95–110. doi: 10.1515/revneuro.2001.12.2.95.
- Vergara C., Ramirez B. // Brain. Res. Brain. Res. Rev. 2004. V. 47. P. 161–173. doi: 10.1016/j.brainresrev.2004.07.010.
- Marques M.J., Neto H.S. // Neurosci. Lett. 1997. V. 234. P. 43–46. doi: 10.1016/s0304-3940(97)00659-9.
- Kumon Y., Sakaki S., Watanabe H., Nakano K., Ohta S., Matsuda S., Yoshimura H. Sakanaka M. // Neurosci. Lett. 1996. V. 206. P. 141–144. doi: 10.1016/s0304-3940(96)12450-2.
- Li W., Wei D., Zhu Z., Xie X., Zhan S., Zhang R., Zhang G., Huang L. // Front. Aging Neurosci. 2021. V. 13. 587403. doi: 10.3389/fnagi.2020.587403.
- Garcia P., Youssef I., Utvik J.K., Florent-Béchard S., Barthélémy V., et al. // J. Neurosci. 2010. V. 30. P. 7516–7527. doi: 10.1523/JNEUROSCI.4182-09.2010.
- Blanchard J., Wanka L., Tung Y.C., Cárdenas-Aguayo Mdel C., LaFerla F.M., Iqbal K., Grundke-Iqbal I. // Acta Neuropathol. 2010. V. 120. P. 605–621. doi: 10.1007/s00401-010-0734-6.
- Peruga I., Hartwig S., Merkler D., Thöne J., Hovemann B., Juckel G., Gold R., Linker R.A. Behav. Brain Res. 2012. V. 229. P. 325–332. doi: 10.1016/j.bbr.2012.01.020.
- Jia C., Brown R.W., Malone H.M., Burgess K.C., Gill, W.D. Keasey M.P., Hagg T. // Psychoneuroendocrinology. 2019. V. 100. P. 96–105. doi: 10.1016/j.psyneuen.2018.09.038.
- Jia C., Drew Gill W., Lovins C., Brown R.W., Hagg T. // Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiol. Stress. 2022. V. 17. 100435. doi: 10.1016/j.ynstr.2022.100435.
- Jia C., Gill W.D., Lovins C., Brown R.W., Hagg T. // Astrocyte focal adhesion kinase reduces passive stress coping by inhibiting ciliary neurotrophic factor only in female mice. Neurobiol. Stress. 2024. V. 30. 100621. doi: 10.1016/j.ynstr.2024.100621.
- Alpár A., Zahola P., Hanics J., Hevesi Z., Korchynska S., et al. // Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J. 2018. V. 37. e100087. doi: 10.15252/embj.2018100087.
- Girotti M, Silva JD, George CM, Morilak DA. // Ciliary neurotrophic factor signaling in the rat orbitofrontal cortex ameliorates stress-induced deficits in reversal learning. Neuropharmacology. 2019. V. 160. 107791. doi: 10.1016/j.neuropharm.2019.107791.
- Mizushige T., Nogimura D., Nagai A., Mitsuhashi H., Taga Y., Kusubata M., Hattori S., Kabuyama Y. // J. Nutr. Sci. Vitaminol. (Tokyo). 2019. V. 65. P. 251–257. doi: 10.3177/jnsv.65.251.
- Grünblatt E., Hu P.E., Bambula M., Zehetmayer S., Jungwirth S., Tragl K.H., Fischer P., and Riederer P. // J. Affect. Disord. 2006. V. 96. P. 111–116. doi: 10.1016/j.jad.2006.05.008.
- Druzhkova T., Pochigaeva K., Yakovlev A., Kazimirova E., Grishkina M., Chepelev A., Guekht A., Gulyaeva N. // Metab. Brain. Dis. 2019. V. 34. P. 621–629. doi: 10.1007/s11011-018-0367-3.
- Duff E., Baile C.A. // Nutr. Rev. 2003. V. 61. P. 423–426. doi: 10.1301/nr.2003.dec.423–426.
- Anderson K.D., Lambert P.D., Corcoran T.L., Murray J.D., Thabet K.E., Yancopoulos G.D., Wiegand S.J. // J. Neuroendocrinol. 2003. V. 15. P. 649–660. doi: 10.1046/j.1365-2826.2003.01043.x.
- Roth S.M., Metter E.J., Lee M.R., Hurley B.F., Ferrell R.E. // J. APl. Physiol. 2003. V. 95. P. 1425–1430. doi: 10.1152/jaPlphysiol.00516.2003.
- Matthews V.B., Febbraio M.A. // J. Mol. Med. (Berl). 2008. V. 86. P. 353–361. doi: 10.1007/s00109-007-0286-y.
- Allen T.L., Matthews V.B., Febbraio M.A. // Handb. Exp. Pharmacol. 201. V. 203. P. 179–199. doi: 10.1007/978-3-642-17214-4_9.
- Vavilina I.S., Shpak A.A., Druzhkova T.A., Guekht A.B., Gulyaeva N.V. // Neurochem. J. 2023. V. 17. P. 702–714. https://doi.org/10.1134/S1819712423040268
- Shpak A.A., Guekht A.B., Druzhkova T.A., Kozlova K.I., Gulyaeva N.V. // Mol. Vis. 2017. V. 17. P. 799–809. PMID: 29225456.
- Shpak A., Guekht A., Druzhkova T., Rider F., Gudkova A., Gulyaeva N. // Neurol. Sci. 2022. V. 43. P. 493–498. doi: 10.1007/s10072-021-05338-4.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
