Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology
- Authors: Kalyaanamoorthy S.1, Opare S.K.1, Xu X.2, Ganesan A.1, Rao P.1
-
Affiliations:
- Department of Chemistry, University of Waterloo
- Chemistry, University of Waterloo
- Issue: Vol 21, No 1 (2024)
- Pages: 24-49
- Section: Medicine
- URL: https://cardiosomatics.ru/1567-2050/article/view/643702
- DOI: https://doi.org/10.2174/0115672050301407240408033046
- ID: 643702
Cite item
Full Text
Abstract
:Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimers disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
About the authors
Subha Kalyaanamoorthy
Department of Chemistry, University of Waterloo
Author for correspondence.
Email: info@benthamscience.net
Stanley Kojo Opare
Department of Chemistry, University of Waterloo
Email: info@benthamscience.net
Xiaoxiao Xu
Chemistry, University of Waterloo
Email: info@benthamscience.net
Aravindhan Ganesan
Department of Chemistry, University of Waterloo
Email: info@benthamscience.net
Praveen Rao
Department of Chemistry, University of Waterloo
Email: info@benthamscience.net
References
- Jha, A.; Mukhopadhaya, K. Memory, cognitive impairment and dementia. In: Alzheimers Disease: Diagnosis and Treatment Guide; Springer International Publishing: Cham, 2021; pp. 1-20. doi: 10.1007/978-3-030-56739-2_1
- Matthews, K.A.; Xu, W.; Gaglioti, A.H.; Holt, J.B.; Croft, J.B.; Mack, D.; McGuire, L.C. Racial and ethnic estimates of Alzheimers disease and related dementias in the United States (20152060) in adults aged ≥65 years. Alzheimers Dement., 2019, 15(1), 17-24. doi: 10.1016/j.jalz.2018.06.3063 PMID: 30243772
- Alzheimers disease and related dementias. 2020. Available from: https://www.cdc.gov/aging
- Gauthier, S. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. In: World Alzheimer Reports; Benoist Chloe, W.W., Ed.; Alzheimers Disease International, 2022; p. 413.
- Meyers, E.A.; Sexton, C.; Snyder, H.M.; Carrillo, M.C. Impact of Alzheimers association support and engagement in the AD/ADRD research community through the COVID-19 pandemic and beyond. Alzheimers Dement., 2023, 19(7), 3222-3225. doi: 10.1002/alz.13015 PMID: 36872646
- Tay, L.X.; Ong, S.C.; Tay, L.J.; Ng, T.; Parumasivam, T. Economic burden of alzheimers disease: A systematic review. Value Health Reg. Issues, 2024, 40, 1-12. doi: 10.1016/j.vhri.2023.09.008 PMID: 37972428
- Global action plan on the public health response to dementia 2017-2025. Ed.; World Health Organization. 2017
- Achúcarro, N. Elongated and stäbechenzellen cells: Neuroglic cells and granulo-adipose cells at the Ammon horn of the rabbit; Nicolás Moya, 1909.
- Achúcarro, N. Notes on the structure and functions of neuroglia and in particular of neuroglia of the human cerebral cortex; Children of Nicolás Moya, 1914.
- Kim, S.R.; Lee, J.M. Prothrombin kringle-2, a mediator of microglial activation: new insight in Alzheimers disease pathogenesis. Neural Regen. Res., 2022, 17(12), 2675-2676. doi: 10.4103/1673-5374.335813 PMID: 35662205
- Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R.; Murtagh, F.R. An english translation of alzheimers 1907 paper, "über eine eigenartige erkankung der hirnrinde". Clin. Anat., 1995, 8(6), 429-431. doi: 10.1002/ca.980080612 PMID: 8713166
- Swerdlow, R.H.; Anderson, H.; Burns, J.M. Alzheimers disease. In: Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S.; DeLuca, J.; Caplan, B., Eds.; Springer New York: New York, NY, 2011; pp. 105-110. doi: 10.1007/978-0-387-79948-3_290
- Mattson, M.P. Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimers disease. J. Neurovirol., 2002, 8(6), 539-550. doi: 10.1080/13550280290100978 PMID: 12476348
- Cabezas, I.L.; Batista, A.H.; Rol, G.P. The role of glial cells in Alzheimer disease: Potential therapeutic implications. Neurologia, 2014, 29(5), 305-309. doi: 10.1016/j.nrl.2012.10.006 PMID: 23246214
- Sahara, N.; Maeda, S.; Takashima, A. Tau oligomerization: A role for tau aggregation intermediates linked to neurodegeneration. Curr. Alzheimer Res., 2008, 5(6), 591-598. doi: 10.2174/156720508786898442 PMID: 19075586
- Hosokawa, M.; Masuda-Suzukake, M.; Shitara, H.; Shimozawa, A.; Suzuki, G.; Kondo, H.; Nonaka, T.; Campbell, W.; Arai, T.; Hasegawa, M. Development of a novel tau propagation mouse model endogenously expressing 3 and 4 repeat tau isoforms. Brain, 2022, 145(1), 349-361. doi: 10.1093/brain/awab289 PMID: 34515757
- Tsujikawa, K.; Hamanaka, K.; Riku, Y.; Hattori, Y.; Hara, N.; Iguchi, Y.; Ishigaki, S.; Hashizume, A.; Miyatake, S.; Mitsuhashi, S.; Miyazaki, Y.; Kataoka, M.; Jiayi, L.; Yasui, K.; Kuru, S.; Koike, H.; Kobayashi, K.; Sahara, N.; Ozaki, N.; Yoshida, M.; Kakita, A.; Saito, Y.; Iwasaki, Y.; Miyashita, A.; Iwatsubo, T.; Ikeuchi, T.; Miyata, T.; Sobue, G.; Matsumoto, N.; Sahashi, K.; Katsuno, M. Actin-binding protein filamin-A drives tau aggregation and contributes to progressive supranuclear palsy pathology. Sci. Adv., 2022, 8(21), eabm5029. doi: 10.1126/sciadv.abm5029 PMID: 35613261
- Lukiw, W.J. Recent advances in our molecular and mechanistic understanding of misfolded cellular proteins in alzheimers disease (AD) and prion disease (PrD). Biomolecules, 2022, 12(2), 166. doi: 10.3390/biom12020166 PMID: 35204666
- Petrozziello, T.; Bordt, E.A.; Mills, A.N.; Kim, S.E.; Sapp, E.; Devlin, B.A.; Obeng-Marnu, A.A.; Farhan, S.M.K.; Amaral, A.C.; Dujardin, S.; Dooley, P.M.; Henstridge, C.; Oakley, D.H.; Neueder, A.; Hyman, B.T.; Spires-Jones, T.L.; Bilbo, S.D.; Vakili, K.; Cudkowicz, M.E.; Berry, J.D.; DiFiglia, M.; Silva, M.C.; Haggarty, S.J.; Sadri-Vakili, G. Targeting tau mitigates mitochondrial fragmentation and oxidative stress in amyotrophic lateral sclerosis. Mol. Neurobiol., 2022, 59(1), 683-702. doi: 10.1007/s12035-021-02557-w PMID: 34757590
- Liang, S.Y.; Wang, Z.T.; Tan, L.; Yu, J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol., 2022, 59(6), 3617-3634. doi: 10.1007/s12035-022-02809-3 PMID: 35359226
- Maeda, S.; Sahara, N.; Saito, Y.; Murayama, M.; Yoshiike, Y.; Kim, H.; Miyasaka, T.; Murayama, S.; Ikai, A.; Takashima, A. Granular tau oligomers as intermediates of tau filaments. Biochemistry, 2007, 46(12), 3856-3861. doi: 10.1021/bi061359o PMID: 17338548
- Gerson, J.E.; Sengupta, U.; Lasagna-Reeves, C.A.; Guerrero- Muñoz, M.J.; Troncoso, J.; Kayed, R. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol. Commun., 2014, 2(1), 73. doi: 10.1186/2051-5960-2-73 PMID: 24927818
- Shafiei, S.S.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L. Tau oligomers: Cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci., 2017, 9, 83. doi: 10.3389/fnagi.2017.00083 PMID: 28420982
- Peeraer, E.; Bottelbergs, A.; van Kolen, K.; Stancu, I.C.; Vasconcelos, B.; Mahieu, M.; Duytschaever, H.; Ver Donck, L.; Torremans, A.; Sluydts, E.; Van Acker, N.; Kemp, J.A.; Mercken, M.; Brunden, K.R.; Trojanowski, J.Q.; Dewachter, I.; Lee, V.M.Y.; Moechars, D. Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiol. Dis., 2015, 73, 83-95. doi: 10.1016/j.nbd.2014.08.032 PMID: 25220759
- Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532. doi: 10.3389/fneur.2020.595532 PMID: 33488497
- Marcelli, S.; Corbo, M.; Iannuzzi, F.; Negri, L.; Blandini, F.; Nistico, R.; Feligioni, M. The involvement of post-translational modifications in alzheimers disease. Curr. Alzheimer Res., 2018, 15(4), 313-335. doi: 10.2174/1567205014666170505095109 PMID: 28474569
- Selkoe, D.J. The therapeutics of Alzheimers disease: Where we stand and where we are heading. Ann. Neurol., 2013, 74(3), 328-336. doi: 10.1002/ana.24001 PMID: 25813842
- Ashraf, G.; Greig, N.; Khan, T.; Hassan, I.; Tabrez, S.; Shakil, S.; Sheikh, I.; Zaidi, S.; Akram, M.; Jabir, N.; Firoz, C.; Naeem, A.; Alhazza, I.; Damanhouri, G.; Kamal, M. Protein misfolding and aggregation in Alzheimers disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1280-1293. doi: 10.2174/1871527313666140917095514 PMID: 25230234
- Braak, H.; Braak, E. Staging of alzheimers disease-related neurofibrillary changes. Neurobiol. Aging, 1995, 16(3), 271-278. doi: 10.1016/0197-4580(95)00021-6 PMID: 7566337
- Iqbal, K.; Novak, M. From tangles to tau protein. Bratisl. Lek Listy, 2006, 107(9-10), 341-342. PMID: 17262984
- Fuentes, P.; Catalan, J. A clinical perspective: Anti taus treatment in Alzheimers disease. Curr. Alzheimer Res., 2011, 8(6), 686-688. doi: 10.2174/156720511796717221 PMID: 21605037
- Ceyzériat, K.; Zilli, T.; Millet, P.; Frisoni, G.B.; Garibotto, V.; Tournier, B.B. Learning from the past: A review of clinical trials targeting amyloid, tau and neuroinflammation in alzheimers disease. Curr. Alzheimer Res., 2020, 17(2), 112-125. doi: 10.2174/1567205017666200304085513 PMID: 32129164
- Cook, C.; Stankowski, J.N.; Carlomagno, Y.; Stetler, C.; Petrucelli, L. Acetylation: A new key to unlock taus role in neurodegeneration. Alzheimers Res. Ther., 2014, 6(3), 29. doi: 10.1186/alzrt259 PMID: 25031639
- Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimers disease. Curr. Opin. Neurobiol., 2021, 69, 131-138. doi: 10.1016/j.conb.2021.03.003 PMID: 33892381
- Park, S.; Lee, J.H.; Jeon, J.H.; Lee, M.J. Degradation or aggregation: The ramifications of post-translational modifications on tau. BMB Rep., 2018, 51(6), 265-273. doi: 10.5483/BMBRep.2018.51.6.077 PMID: 29661268
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol., 2019, 15(6), 346-366. doi: 10.1038/s41581-019-0129-4 PMID: 30858582
- Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Yoshida, H.; Watanabe, A.; Titani, K.; Ihara, Y. Hyperphosphorylation of Tau in PHF. Neurobiol. Aging, 1995, 16(3), 365-371. doi: 10.1016/0197-4580(95)00027-C PMID: 7566346
- Haukedal, H.; Freude, K.K. Implications of glycosylation in alzheimers disease. Front. Neurosci., 2021, 14, 625348. doi: 10.3389/fnins.2020.625348 PMID: 33519371
- Yang, X.J.; Seto, E. Lysine acetylation: Codified crosstalk with other posttranslational modifications. Mol. Cell, 2008, 31(4), 449-461. doi: 10.1016/j.molcel.2008.07.002 PMID: 18722172
- Funk, K.E.; Thomas, S.N.; Schafer, K.N.; Cooper, G.L.; Liao, Z.; Clark, D.J.; Yang, A.J.; Kuret, J. Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem. J., 2014, 462(1), 77-88. doi: 10.1042/BJ20140372 PMID: 24869773
- Gong, C.X.; Liu, F.; Iqbal, K. O-GlcNAcylation: A regulator of tau pathology and neurodegeneration. Alzheimers Dement., 2016, 12(10), 1078-1089. doi: 10.1016/j.jalz.2016.02.011 PMID: 27126545
- Mondragón-Rodríguez, S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimers disease. Oxid Med Cell Longev., 2013, 2013, 940603. doi: 10.1155/2013/940603
- Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Post-translational modifications of tau protein in Alzheimers disease. J. Neural Transm., 2005, 112(6), 813-838. doi: 10.1007/s00702-004-0221-0 PMID: 15517432
- Liu, F.; Zaidi, T.; Iqbal, K.; Grundke-Iqbal, I.; Merkle, R.K.; Gong, C.X. Role of glycosylation in hyperphosphorylation of tau in Alzheimers disease. FEBS Lett., 2002, 512(1-3), 101-106. doi: 10.1016/S0014-5793(02)02228-7 PMID: 11852060
- Ye, H.; Han, Y.; Li, P.; Su, Z.; Huang, Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci., 2022, 72(8), 1557-1571. doi: 10.1007/s12031-022-02002-0 PMID: 35325356
- Mandel, N.; Agarwal, N. Role of SUMOylation in neurodegenerative diseases. Cells, 2022, 11(21), 3395. doi: 10.3390/cells11213395 PMID: 36359791
- Sarge, K.D.; Park-Sarge, O.K. SUMOylation and human disease pathogenesis. Trends Biochem. Sci., 2009, 34(4), 200-205. doi: 10.1016/j.tibs.2009.01.004 PMID: 19282183
- Stoothoff, W.H.; Johnson, G.V.W. Tau phosphorylation: Physiological and pathological consequences. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 280-297. doi: 10.1016/j.bbadis.2004.06.017 PMID: 15615646
- Morris, M.; Knudsen, G.M.; Maeda, S.; Trinidad, J.C.; Ioanoviciu, A.; Burlingame, A.L.; Mucke, L. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci., 2015, 18(8), 1183-1189. doi: 10.1038/nn.4067 PMID: 26192747
- Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Reynolds, M.R.; Horowitz, P.M.; Fu, Y.; Wang, T.; Cahill, M.E.; Bigio, E.H.; Berry, R.W.; Binder, L.I. Tau truncation during neurofibrillary tangle evolution in Alzheimers disease. Neurobiol. Aging, 2005, 26(7), 1015-1022. doi: 10.1016/j.neurobiolaging.2004.09.019 PMID: 15748781
- Li, L.; Jiang, Y.; Wang, J.Z.; Liu, R.; Wang, X. Tau ubiquitination in alzheimers disease. Front. Neurol., 2022, 12, 786353. doi: 10.3389/fneur.2021.786353 PMID: 35211074
- Oliveira, J.; Costa, M.; de Almeida, M.S.C.; da Cruz e Silva, O.A.B.; Henriques, A.G. Protein phosphorylation is a key mechanism in Alzheimers disease. J. Alzheimers Dis., 2017, 58(4), 953-978. doi: 10.3233/JAD-170176 PMID: 28527217
- Tolnay, M.; Sergeant, N.; Ghestem, A.; Chalbot, S.; de Vos, R.A.; Jansen Steur, E.N.; Probst, A.; Delacourte, A. Argyrophilic grain disease and Alzheimers disease are distinguished by their different distribution of tau protein isoforms. Acta Neuropathol., 2002, 104(4), 425-434. doi: 10.1007/s00401-002-0591-z PMID: 12200631
- Drepper, F.; Biernat, J.; Kaniyappan, S.; Meyer, H.E.; Mandelkow, E.M.; Warscheid, B.; Mandelkow, E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J. Biol. Chem., 2020, 295(52), 18213-18225. doi: 10.1074/jbc.RA120.015882 PMID: 33106314
- Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S. Phospho-tau bar code: Analysis of phosphoisotypes of tau and its application to tauopathy. Front. Neurosci., 2018, 12, 44. doi: 10.3389/fnins.2018.00044 PMID: 29467609
- Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119. doi: 10.1016/j.molmed.2009.01.003 PMID: 19246243
- Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev., 2000, 33(1), 95-130. doi: 10.1016/S0165-0173(00)00019-9 PMID: 10967355
- Haj-Yahya, M. Site-specific hyperphosphorylation of tau inhibits its fibrillization in vitro, blocks its seeding capacity in cells, and disrupts its microtubule binding; Implications for the native state stabilization of tau. bioRxiv, 2019, 772046. doi: 10.1101/772046
- Zhou, X.W.; Li, X.; Bjorkdahl, C.; Sjogren, M.J.; Alafuzoff, I.; Soininen, H.; Grundke-Iqbal, I.; Iqbal, K.; Winblad, B.; Pei, J.J. Assessments of the accumulation severities of amyloid β-protein and hyperphosphorylated tau in the medial temporal cortex of control and Alzheimers brains. Neurobiol. Dis., 2006, 22(3), 657-668. doi: 10.1016/j.nbd.2006.01.006 PMID: 16513361
- imić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Miloević, N.; Baadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P. Tau protein hyperphosphorylation and aggregation in Alzheimers disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6. doi: 10.3390/biom6010006 PMID: 26751493
- Su, J.H.; Cummings, B.J.; Cotman, C.W. Early phosphorylation of tau in Alzheimerʼs disease occurs at Ser-202 and is preferentially located within neurites. Neuroreport, 1994, 5(17), 2358-2362. doi: 10.1097/00001756-199411000-00037 PMID: 7533559
- Iqbal, K.; Grundke-Iqbal, I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimers disease. Mol. Neurobiol., 1991, 5(2-4), 399-410. doi: 10.1007/BF02935561 PMID: 1726645
- Guillozet-Bongaarts, A.L.; Cahill, M.E.; Cryns, V.L.; Reynolds, M.R.; Berry, R.W.; Binder, L.I. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: In vitro evidence and implications for tangle formation in vivo. J. Neurochem., 2006, 97(4), 1005-1014. doi: 10.1111/j.1471-4159.2006.03784.x PMID: 16606369
- Dickey, C.A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R.M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Eckman, C.B.; Patterson, C.; Dickson, D.W.; Nahman, N.S., Jr; Hutton, M.; Burrows, F.; Petrucelli, L. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest., 2007, 117(3), 648-658. doi: 10.1172/JCI29715 PMID: 17304350
- Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; Ashe, K.H.; Liao, D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6), 1067-1081. doi: 10.1016/j.neuron.2010.11.030 PMID: 21172610
- Lu, P.J.; Wulf, G.; Zhou, X.Z.; Davies, P.; Lu, K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature, 1999, 399(6738), 784-788. doi: 10.1038/21650 PMID: 10391244
- Kondo, A.; Shahpasand, K.; Mannix, R.; Qiu, J.; Moncaster, J.; Chen, C.H.; Yao, Y.; Lin, Y.M.; Driver, J.A.; Sun, Y.; Wei, S.; Luo, M.L.; Albayram, O.; Huang, P.; Rotenberg, A.; Ryo, A.; Goldstein, L.E.; Pascual-Leone, A.; McKee, A.C.; Meehan, W.; Zhou, X.Z.; Lu, K.P. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature, 2015, 523(7561), 431-436. doi: 10.1038/nature14658 PMID: 26176913
- Lee, T.H.; Chen, C.H.; Suizu, F.; Huang, P.; Schiene-Fischer, C.; Daum, S.; Zhang, Y.J.; Goate, A.; Chen, R.H.; Zhou, X.Z.; Lu, K.P. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol. Cell, 2011, 42(2), 147-159. doi: 10.1016/j.molcel.2011.03.005 PMID: 21497122
- Balastik, M.; Lim, J.; Pastorino, L.; Lu, K.P. Pin1 in Alzheimers disease: Multiple substrates, one regulatory mechanism? Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(4), 422-429. doi: 10.1016/j.bbadis.2007.01.006 PMID: 17317113
- Buerger, K.; Ewers, M.; Pirttilä, T.; Zinkowski, R.; Alafuzoff, I.; Teipel, S.J.; DeBernardis, J.; Kerkman, D.; McCulloch, C.; Soininen, H.; Hampel, H. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimers disease. Brain, 2006, 129(11), 3035-3041. doi: 10.1093/brain/awl269 PMID: 17012293
- Gong, C.X.; Singh, T.J.; Grundke-Iqbal, I.; Iqbal, K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem., 1993, 61(3), 921-927. doi: 10.1111/j.1471-4159.1993.tb03603.x PMID: 8395566
- Chen, S.; Li, B.; Grundke-Iqbal, I.; Iqbal, K. I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. J. Biol. Chem., 2008, 283(16), 10513-10521. doi: 10.1074/jbc.M709852200 PMID: 18245083
- Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem., 2011, 80(1), 825-858. doi: 10.1146/annurev-biochem-060608-102511 PMID: 21391816
- Liu, F.; Iqbal, K.; Grundke-Iqbal, I.; Hart, G.W.; Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimers disease. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10804-10809. doi: 10.1073/pnas.0400348101 PMID: 15249677
- ODonnell, N.; Zachara, N.E.; Hart, G.W.; Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol., 2004, 24(4), 1680-1690. doi: 10.1128/MCB.24.4.1680-1690.2004 PMID: 14749383
- Soeda, Y.; Takashima, A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci., 2020, 13, 590896. doi: 10.3389/fnmol.2020.590896 PMID: 33343298
- Carlomagno, Y.; Chung, D.C.; Yue, M.; Castanedes-Casey, M.; Madden, B.J.; Dunmore, J.; Tong, J.; DeTure, M.; Dickson, D.W.; Petrucelli, L.; Cook, C. An acetylationphosphorylation switch that regulates tau aggregation propensity and function. J. Biol. Chem., 2017, 292(37), 15277-15286. doi: 10.1074/jbc.M117.794602 PMID: 28760828
- Xia, Y.; Bell, B.M.; Giasson, B.I. Tau K321/K353 pseudoacetylation within KXGS motifs regulates taumicrotubule interactions and inhibits aggregation. Sci. Rep., 2021, 11(1), 17069. doi: 10.1038/s41598-021-96627-7 PMID: 34426645
- Julien, C.; Tremblay, C.; Émond, V.; Lebbadi, M.; Salem, N., Jr; Bennett, D.A.; Calon, F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2009, 68(1), 48-58. doi: 10.1097/NEN.0b013e3181922348 PMID: 19104446
- Min, S.W.; Cho, S.H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; Meyers, D.; Cole, P.A.; Ott, M.; Gan, L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 2010, 67(6), 953-966. doi: 10.1016/j.neuron.2010.08.044 PMID: 20869593
- Gorsky, M.K.; Burnouf, S.; Dols, J.; Mandelkow, E.; Partridge, L. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci. Rep., 2016, 6(1), 22685. doi: 10.1038/srep22685 PMID: 26940749
- Cohen, T.J.; Guo, J.L.; Hurtado, D.E.; Kwong, L.K.; Mills, I.P.; Trojanowski, J.Q.; Lee, V.M.Y. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun., 2011, 2(1), 252. doi: 10.1038/ncomms1255 PMID: 21427723
- Min, S.W.; Chen, X.; Tracy, T.E.; Li, Y.; Zhou, Y.; Wang, C.; Shirakawa, K.; Minami, S.S.; Defensor, E.; Mok, S.A.; Sohn, P.D.; Schilling, B.; Cong, X.; Ellerby, L.; Gibson, B.W.; Johnson, J.; Krogan, N.; Shamloo, M.; Gestwicki, J.; Masliah, E.; Verdin, E.; Gan, L. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med., 2015, 21(10), 1154-1162. doi: 10.1038/nm.3951 PMID: 26390242
- Boulton, T.G.; Yancopoulos, G.D.; Gregory, J.S.; Slaughter, C.; Moomaw, C.; Hsu, J.; Cobb, M.H. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, 249(4964), 64-67. doi: 10.1126/science.2164259 PMID: 2164259
- Cohen, T.J.; Friedmann, D.; Hwang, A.W.; Marmorstein, R.; Lee, V.M.Y. The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat. Struct. Mol. Biol., 2013, 20(6), 756-762. doi: 10.1038/nsmb.2555 PMID: 23624859
- Cohen, T.J.; Constance, B.H.; Hwang, A.W.; James, M.; Yuan, C.X. Intrinsic tau acetylation is coupled to auto-proteolytic tau fragmentation. PLoS One, 2016, 11(7), e0158470. doi: 10.1371/journal.pone.0158470 PMID: 27383765
- Luo, Y.; Ma, B.; Nussinov, R.; Wei, G. Structural insight into tau proteins paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J. Phys. Chem. Lett., 2014, 5(17), 3026-3031. doi: 10.1021/jz501457f PMID: 25206938
- Sohn, P.D.; Tracy, T.E.; Son, H.I.; Zhou, Y.; Leite, R.E.P.; Miller, B.L.; Seeley, W.W.; Grinberg, L.T.; Gan, L. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol. Neurodegener., 2016, 11(1), 47. doi: 10.1186/s13024-016-0109-0 PMID: 27356871
- Cook, C.; Carlomagno, Y.; Gendron, T.F.; Dunmore, J.; Scheffel, K.; Stetler, C.; Davis, M.; Dickson, D.; Jarpe, M.; DeTure, M.; Petrucelli, L. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet., 2014, 23(1), 104-116. doi: 10.1093/hmg/ddt402 PMID: 23962722
- Yao, Z.; Gao, M.; Huang, Y. Acetylation of lysine residues within the MT-binding repeats specifically modulates the structure ensemble of Tau. FASEB J., 2018, 32(S1), lb34-lb34. doi: 10.1096/fasebj.2018.32.1_supplement.lb34
- Thomas, S.N.; Funk, K.E.; Wan, Y.; Liao, Z.; Davies, P.; Kuret, J.; Yang, A.J. Dual modification of Alzheimers disease PHF-tau protein by lysine methylation and ubiquitylation: A mass spectrometry approach. Acta Neuropathol., 2012, 123(1), 105-117. doi: 10.1007/s00401-011-0893-0 PMID: 22033876
- Balmik, A.A.; Chinnathambi, S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimers disease. Cell Commun. Signal., 2021, 19(1), 51. doi: 10.1186/s12964-021-00732-z PMID: 33962636
- Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-directed post-translational modifications of tau protein in Alzheimers disease and related tauopathies. Front. Mol. Biosci., 2017, 4, 56. doi: 10.3389/fmolb.2017.00056 PMID: 28848737
- Shams, H.; Matsunaga, A.; Ma, Q.; Mofrad, M.R.K.; Didonna, A. Methylation at a conserved lysine residue modulates tau assembly and cellular functions. Mol. Cell. Neurosci., 2022, 120, 103707. doi: 10.1016/j.mcn.2022.103707 PMID: 35231567
- Bichmann, M.; Prat Oriol, N.; Ercan-Herbst, E.; Schöndorf, D.C.; Gomez Ramos, B.; Schwärzler, V.; Neu, M.; Schlüter, A.; Wang, X.; Jin, L.; Hu, C.; Tian, Y.; Ried, J.S.; Haberkant, P.; Gasparini, L.; Ehrnhoefer, D.E. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimers disease. Mol. Neurodegener., 2021, 16(1), 46. doi: 10.1186/s13024-021-00468-x PMID: 34215303
- Wang, P.; Joberty, G.; Buist, A.; Vanoosthuyse, A.; Stancu, I.C.; Vasconcelos, B.; Pierrot, N.; Faelth-Savitski, M.; Kienlen-Campard, P.; Octave, J.N.; Bantscheff, M.; Drewes, G.; Moechars, D.; Dewachter, I. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol., 2017, 133(5), 731-749. doi: 10.1007/s00401-016-1663-9 PMID: 28083634
- Xu, Z.; Kohli, E.; Devlin, K.I.; Bold, M.; Nix, J.C.; Misra, S. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol., 2008, 8(1), 26. doi: 10.1186/1472-6807-8-26 PMID: 18485199
- Petrucelli, L.; Dickson, D.; Kehoe, K.; Taylor, J.; Snyder, H.; Grover, A.; De Lucia, M.; McGowan, E.; Lewis, J.; Prihar, G.; Kim, J.; Dillmann, W.H.; Browne, S.E.; Hall, A.; Voellmy, R.; Tsuboi, Y.; Dawson, T.M.; Wolozin, B.; Hardy, J.; Hutton, M. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet., 2004, 13(7), 703-714. doi: 10.1093/hmg/ddh083 PMID: 14962978
- Flach, K.; Ramminger, E.; Hilbrich, I.; Arsalan-Werner, A.; Albrecht, F.; Herrmann, L.; Goedert, M.; Arendt, T.; Holzer, M. Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1527-1538. doi: 10.1016/j.bbadis.2014.05.029 PMID: 24905733
- Babu, J.R.; Geetha, T.; Wooten, M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem., 2005, 94(1), 192-203. doi: 10.1111/j.1471-4159.2005.03181.x PMID: 15953362
- Cripps, D.; Thomas, S.N.; Jeng, Y.; Yang, F.; Davies, P.; Yang, A.J. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem., 2006, 281(16), 10825-10838. doi: 10.1074/jbc.M512786200 PMID: 16443603
- Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Titani, K.; Ihara, Y. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron, 1993, 10(6), 1151-1160. doi: 10.1016/0896-6273(93)90063-W PMID: 8391280
- Dolan, P.J.; Johnson, G.V.W. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem., 2010, 285(29), 21978-21987. doi: 10.1074/jbc.M110.110940 PMID: 20466727
- Puangmalai, N.; Sengupta, U.; Bhatt, N.; Gaikwad, S.; Montalbano, M.; Bhuyan, A.; Garcia, S.; McAllen, S.; Sonawane, M.; Jerez, C.; Zhao, Y.; Kayed, R. Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimers disease. J. Biol. Chem., 2022, 298(4), 101766. doi: 10.1016/j.jbc.2022.101766 PMID: 35202653
- Perry, G.; Friedman, R.; Shaw, G.; Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl. Acad. Sci. USA, 1987, 84(9), 3033-3036. doi: 10.1073/pnas.84.9.3033 PMID: 3033674
- García-Sierra, F.; Jarero-Basulto, J.J.; Kristofikova, Z.; Majer, E.; Binder, L.I.; Ripova, D. Ubiquitin is associated with early truncation of tau protein at aspartic acid(421) during the maturation of neurofibrillary tangles in Alzheimers disease. Brain Pathol., 2012, 22(2), 240-250. doi: 10.1111/j.1750-3639.2011.00525.x PMID: 21919991
- Chakrabarty, R.; Yousuf, S.; Singh, M.P. Contributive role of hyperglycemia and hypoglycemia towards the development of alzheimers disease. Mol. Neurobiol., 2022, 59(7), 4274-4291. doi: 10.1007/s12035-022-02846-y PMID: 35503159
- Weeraratna, A.T.; Kalehua, A.; DeLeon, I.; Bertak, D.; Maher, G.; Wade, M.S.; Lustig, A.; Becker, K.G.; Wood, W., III; Walker, D.G.; Beach, T.G.; Taub, D.D. Alterations in immunological and neurological gene expression patterns in Alzheimers disease tissues. Exp. Cell Res., 2007, 313(3), 450-461. doi: 10.1016/j.yexcr.2006.10.028 PMID: 17188679
- Chenfei, Z.; Haizhen, Y.; Jie, X.; Na, Z.; Bo, X. Effects of aerobic exercise on hippocampal SUMOylation in APP/PS1 transgenic mice. Neurosci. Lett., 2022, 767, 136303. doi: 10.1016/j.neulet.2021.136303 PMID: 34695453
- Dorval, V.; Fraser, P.E. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J. Biol. Chem., 2006, 281(15), 9919-9924. doi: 10.1074/jbc.M510127200 PMID: 16464864
- Luo, H.B.; Xia, Y.Y.; Shu, X.J.; Liu, Z.C.; Feng, Y.; Liu, X.H.; Yu, G.; Yin, G.; Xiong, Y.S.; Zeng, K.; Jiang, J.; Ye, K.; Wang, X.C.; Wang, J.Z. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16586-16591. doi: 10.1073/pnas.1417548111 PMID: 25378699
- Nagaraju, P.G.; Priyadarshini, P. Tau-aggregation inhibition: Promising role of nanoencapsulated dietary molecules in the management of Alzheimers disease. Crit. Rev. Food Sci. Nutr., 2023, 63(32), 11153-11168. PMID: 35748395
- Qin, M.; Li, H.; Bao, J.; Xia, Y.; Ke, D.; Wang, Q.; Liu, R.; Wang, J.Z.; Zhang, B.; Shu, X.; Wang, X. SET SUMOylation promotes its cytoplasmic retention and induces tau pathology and cognitive impairments. Acta Neuropathol. Commun., 2019, 7(1), 21. doi: 10.1186/s40478-019-0663-0 PMID: 30767764
- Orsini, F. SUMO2 protects against tau-induced synaptic and cognitive dysfunction. bioRxiv, 2022. doi: 10.1101/2022.11.11.516192
- Kovacech, B.; Novak, M. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimers disease. Curr. Alzheimer Res., 2010, 7(8), 708-716. doi: 10.2174/156720510793611556 PMID: 20678071
- Abraha, A.; Ghoshal, N.; Gamblin, T.C.; Cryns, V.; Berry, R.W.; Kuret, J.; Binder, L.I. C-terminal inhibition of tau assembly in vitro and in Alzheimers disease. J. Cell Sci., 2000, 113(21), 3737-3745. doi: 10.1242/jcs.113.21.3737 PMID: 11034902
- Novak, M.; Kabat, J.; Wischik, C.M. Molecular characterization of the minimal protease resistant tau unit of the Alzheimers disease paired helical filament. EMBO J., 1993, 12(1), 365-370. doi: 10.1002/j.1460-2075.1993.tb05665.x PMID: 7679073
- Loon, A.; Zamudio, F.; Sanneh, A.; Brown, B.; Smeltzer, S.; Brownlow, M.L.; Quadri, Z.; Peters, M.; Weeber, E.; Nash, K.; Lee, D.C.; Gordon, M.N.; Morgan, D.; Selenica, M.L.B. Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. Geroscience, 2022, 44(1), 173-194. doi: 10.1007/s11357-021-00408-z PMID: 34410588
- Wischik, C.M.; Novak, M.; Thøgersen, H.C.; Edwards, P.C.; Runswick, M.J.; Jakes, R.; Walker, J.E.; Milstein, C.; Roth, M.; Klug, A. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1988, 85(12), 4506-4510. doi: 10.1073/pnas.85.12.4506 PMID: 3132715
- Horta-Lopez, P.H. Association of α-1-antichymotrypsin expression with the development of conformational changes of tau protein in alzheimer's disease brain. Neuroscience, 2023, 518, 83-100. doi: 10.1016/j.neuroscience.2022.01.002
- Flores-Rodríguez, P.; Ontiveros-Torres, M.A.; Cárdenas-Aguayo, M.C.; Luna-Arias, J.P.; Meraz-Ríos, M.A.; Viramontes-Pintos, A.; Harrington, C.R.; Wischik, C.M.; Mena, R.; Florán-Garduño, B.; Luna-Muñoz, J. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimers disease. Front. Neurosci., 2015, 9, 33. doi: 10.3389/fnins.2015.00033 PMID: 25717290
- Gu, J.; Xu, W.; Jin, N.; Li, L.; Zhou, Y.; Chu, D.; Gong, C.X.; Iqbal, K.; Liu, F. Truncation of Tau selectively facilitates its pathological activities. J. Biol. Chem., 2020, 295(40), 13812-13828. doi: 10.1074/jbc.RA120.012587 PMID: 32737201
- Ngian, Z.K.; Tan, Y.Y.; Choo, C.T.; Lin, W.Q.; Leow, C.Y.; Mah, S.J.; Lai, M.K.P.; Chen, C.L.H.; Ong, C.T. Truncated Tau caused by intron retention is enriched in Alzheimers disease cortex and exhibits altered biochemical properties. Proc. Natl. Acad. Sci. USA, 2022, 119(37), e2204179119. doi: 10.1073/pnas.2204179119 PMID: 36067305
- Lo, C.H. Heterogeneous tau oligomers as molecular targets for alzheimers disease and related tauopathies. Biophysica, 2022, 2(4), 440-451. doi: 10.3390/biophysica2040039
- Novak, P.; Cehlar, O.; Skrabana, R.; Novak, M. Tau conformation as a target for disease-modifying therapy: The role of truncation. J. Alzheimers Dis., 2018, 64(s1), S535-S546. doi: 10.3233/JAD-179942 PMID: 29865059
- Smet-Nocca, C.; Broncel, M.; Wieruszeski, J.M.; Tokarski, C.; Hanoulle, X.; Leroy, A.; Landrieu, I.; Rolando, C.; Lippens, G.; Hackenberger, C.P.R. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol. Biosyst., 2011, 7(5), 1420-1429. doi: 10.1039/c0mb00337a PMID: 21327254
- Sato, Y.; Naito, Y.; Grundke-Iqbal, I.; Iqbal, K.; Endo, T. Analysis of N -glycans of pathological tau: Possible occurrence of aberrant processing of tau in Alzheimers disease. FEBS Lett., 2001, 496(2-3), 152-160. doi: 10.1016/S0014-5793(01)02421-8 PMID: 11356201
- Ledesma, M.D.; Bonay, P.; Colaço, C.; Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem., 1994, 269(34), 21614-21619. doi: 10.1016/S0021-9258(17)31849-5 PMID: 8063802
- Liu, K.; Liu, Y.; Li, L.; Qin, P.; Iqbal, J.; Deng, Y.; Qing, H. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(2), 192-201. doi: 10.1016/j.bbadis.2015.12.002 PMID: 26655600
- Ko, L.; Ko, E.C.; Nacharaju, P.; Liu, W.K.; Chang, E.; Kenessey, A.; Yen, S.H.C. An immunochemical study on tau glycation in paired helical filaments. Brain Res., 1999, 830(2), 301-313. doi: 10.1016/S0006-8993(99)01415-8 PMID: 10366687
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med., 2021, 53(2), 168-188. doi: 10.1038/s12276-021-00561-7 PMID: 33568752
- Lüth, H.J.; Ogunlade, V.; Kuhla, B.; Kientsch-Engel, R.; Stahl, P.; Webster, J.; Arendt, T.; Münch, G. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimers disease brains. Cereb. Cortex, 2004, 15(2), 211-220. doi: 10.1093/cercor/bhh123 PMID: 15238435
- Necula, M.; Kuret, J. Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J. Biol. Chem., 2004, 279(48), 49694-49703. doi: 10.1074/jbc.M405527200 PMID: 15364924
- Yekta, R.; Sadeghi, L.; Dehghan, G. The role of non-enzymatic glycation on Tau-DNA interactions: Kinetic and mechanistic approaches. Int. J. Biol. Macromol., 2022, 207, 161-168. doi: 10.1016/j.ijbiomac.2022.02.178 PMID: 35257729
- Limorenko, G.; Lashuel, H.A. Revisiting the grammar of Tau aggregation and pathology formation: How new insights from brain pathology are shaping how we study and target Tauopathies. Chem. Soc. Rev., 2022, 51(2), 513-565. doi: 10.1039/D1CS00127B PMID: 34889934
- Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration and oxidative dityrosine bridging of the τ protein by peroxynitrite: Implications for Alzheimers disease. Biochemistry, 2005, 44(5), 1690-1700. doi: 10.1021/bi047982v PMID: 15683253
- Maina, M.B. Dityrosine cross-links are present in Alzheimers disease-derived tau oligomers and paired helical filaments (PHF) which promotes the stability of the PHF-core tau (297-391) in vitro. bioRxiv, 2022. doi: 10.1101/2022.05.28.493839
- Butterfield, D.A.; Reed, T.T.; Perluigi, M.; De Marco, C.; Coccia, R.; Keller, J.N.; Markesbery, W.R.; Sultana, R. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: Implications for the role of nitration in the progression of Alzheimers disease. Brain Res., 2007, 1148, 243-248. doi: 10.1016/j.brainres.2007.02.084 PMID: 17395167
- Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration differentially influences τ assembly in vitro. Biochemistry, 2005, 44(42), 13997-14009. doi: 10.1021/bi051028w PMID: 16229489
- Zhang, Y.J.; Xu, Y.F.; Liu, Y.H.; Yin, J.; Li, H.L.; Wang, Q.; Wang, J.Z. Peroxynitrite induces Alzheimer-like tau modifications and accumulation in rat brain and its underlying mechanisms. FASEB J., 2006, 20(9), 1431-1442. doi: 10.1096/fj.05-5223com PMID: 16816118
- Weismiller, H.A.; Holub, T.J.; Krzesinski, B.J.; Margittai, M. A thiol-based intramolecular redox switch in four-repeat tau controls fibril assembly and disassembly. J. Biol. Chem., 2021, 297(3), 101021. doi: 10.1016/j.jbc.2021.101021 PMID: 34339733
- Prifti, E. Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathol. Commun., 2022, 10(1), 1-19. PMID: 34980260
- Schiffter, H.A. 5.41 - Pharmaceutical Proteins Structure, Stability, and Formulation, in Comprehensive Biotechnology, 2nd ed; Academic Press: Burlington, 2011, pp. 521-541.
- Watanabe, A.; Takio, K.; Ihara, Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J. Biol. Chem., 1999, 274(11), 7368-7378. doi: 10.1074/jbc.274.11.7368 PMID: 10066801
- Ebashi, M.; Toru, S.; Nakamura, A.; Kamei, S.; Yokota, T.; Hirokawa, K.; Uchihara, T. Detection of AD-specific four repeat tau with deamidated asparagine residue 279-specific fraction purified from 4R tau polyclonal antibody. Acta Neuropathol., 2019, 138(1), 163-166. doi: 10.1007/s00401-019-02012-0 PMID: 31006065
- Dan, A.; Takahashi, M.; Masuda-Suzukake, M.; Kametani, F.; Nonaka, T.; Kondo, H.; Akiyama, H.; Arai, T.; Mann, D.M.A.; Saito, Y.; Hatsuta, H.; Murayama, S.; Hasegawa, M. Extensive deamidation at asparagine residue 279 accounts for weak immunoreactivity of tau with RD4 antibody in Alzheimers disease brain. Acta Neuropathol. Commun., 2013, 1(1), 54. doi: 10.1186/2051-5960-1-54 PMID: 24252707
- Reynolds, M.R.; Reyes, J.F.; Fu, Y.; Bigio, E.H.; Guillozet-Bongaarts, A.L.; Berry, R.W.; Binder, L.I. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimers disease and other tauopathies. J. Neurosci., 2006, 26(42), 10636-10645. doi: 10.1523/JNEUROSCI.2143-06.2006 PMID: 17050703
- Lyons, A.J.; Gandhi, N.S.; Mancera, R.L. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Proteins, 2014, 82(9), 1907-1923. doi: 10.1002/prot.24544 PMID: 24577753
- Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83. doi: 10.3389/fneur.2013.00083 PMID: 23847585
- Sibille, N.; Huvent, I.; Fauquant, C.; Verdegem, D.; Amniai, L.; Leroy, A.; Wieruszeski, J.M.; Lippens, G.; Landrieu, I. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Proteins, 2012, 80(2), 454-462. doi: 10.1002/prot.23210 PMID: 22072628
- Amniai, L.; Barbier, P.; Sillen, A.; Wieruszeski, J.M.; Peyrot, V.; Lippens, G.; Landrieu, I. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J., 2009, 23(4), 1146-1152. doi: 10.1096/fj.08-121590 PMID: 19074508
- Goode, B.L.; Denis, P.E.; Panda, D.; Radeke, M.J.; Miller, H.P.; Wilson, L.; Feinstein, S.C. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell, 1997, 8(2), 353-365. doi: 10.1091/mbc.8.2.353 PMID: 9190213
- Gandhi, N.S.; Landrieu, I.; Byrne, C.; Kukic, P.; Amniai, L.; Cantrelle, F.X.; Wieruszeski, J.M.; Mancera, R.L.; Jacquot, Y.; Lippens, G. A phosphorylation-induced turn defines the alzheimers disease AT8 antibody epitope on the tau protein. Angew. Chem. Int. Ed., 2015, 54(23), 6819-6823. doi: 10.1002/anie.201501898 PMID: 25881502
- Rani, L.; Mallajosyula, S.S. Phosphorylation-induced structural reorganization in tau-paired helical filaments. ACS Chem. Neurosci., 2021, 12(9), 1621-1631. doi: 10.1021/acschemneuro.1c00084 PMID: 33877805
- Zou, Y.; Guan, L. Unraveling the influence of K280 acetylation on the conformational features of tau core fragment: A molecular dynamics simulation study. Front. Mol. Biosci., 2021, 8, 801577. doi: 10.3389/fmolb.2021.801577 PMID: 34966788
- Brotzakis, Z.F.; Lindstedt, P.R.; Taylor, R.J.; Rinauro, D.J.; Gallagher, N.C.T.; Bernardes, G.J.L.; Vendruscolo, M. A structural ensemble of a tau-microtubule complex reveals regulatory tau phosphorylation and acetylation mechanisms. ACS Cent. Sci., 2021, 7(12), 1986-1995. doi: 10.1021/acscentsci.1c00585 PMID: 34963892
- Castro, T.G.; Ferreira, T.; Matamá, T.; Munteanu, F.D.; Cavaco-Paulo, A. Acetylation and phosphorylation processes modulate Taus binding to microtubules: A molecular dynamics study. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(2), 130276. doi: 10.1016/j.bbagen.2022.130276 PMID: 36372288
- Leonard, C.; Phillips, C.; McCarty, J. Insight into seeded tau fibril growth from Molecular Dynamics simulation of the Alzheimers disease protofibril core. Front. Mol. Biosci., 2021, 8, 624302. doi: 10.3389/fmolb.2021.624302 PMID: 33816551
- Munari, F.; Mollica, L.; Valente, C.; Parolini, F.; Kachoie, E.A.; Arrigoni, G.; DOnofrio, M.; Capaldi, S.; Assfalg, M. Structural basis for chaperone-independent ubiquitination of tau protein by its E3 ligase CHIP. Angew. Chem. Int. Ed., 2022, 61(15), e202112374. doi: 10.1002/anie.202112374 PMID: 35107860
- Mathew, A.T. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: A microsecond long molecular dynamics study. Proteins, 2022, 91(2), 147-162. doi: 10.26434/chemrxiv-2022-5bs5r
- Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimers disease drug development pipeline: 2019. Alzheimers Dement., 2019, 5(1), 272-293. doi: 10.1016/j.trci.2019.05.008 PMID: 31334330
- Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimers disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432. doi: 10.1016/j.nurt.2008.05.001 PMID: 18625454
- Travis, J. Roche Alzheimers antibody fails to slow cognitive decline in major test; SCIENCEINSIDER, 2022. doi: 10.1126/science.adf8125
- Fellner, S.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruß, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; Buschauer, A.; Fricker, G. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest., 2002, 110(9), 1309-1318. doi: 10.1172/JCI0215451 PMID: 12417570
- Sengupta, A.; Kabat, J.; Novak, M.; Wu, Q.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys., 1998, 357(2), 299-309. doi: 10.1006/abbi.1998.0813 PMID: 9735171
- Ishihara, T.; Hong, M.; Zhang, B.; Nakagawa, Y.; Lee, M.K.; Trojanowski, J.Q.; Lee, V.M.Y. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron, 1999, 24(3), 751-762. doi: 10.1016/S0896-6273(00)81127-7 PMID: 10595524
- Schneider, A.; Biernat, J.; von Bergen, M.; Mandelkow, E.; Mandelkow, E.M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 1999, 38(12), 3549-3558. doi: 10.1021/bi981874p PMID: 10090741
- Ghoreschi, K.; Laurence, A.; OShea, J.J. Selectivity and therapeutic inhibition of kinases: To be or not to be? Nat. Immunol., 2009, 10(4), 356-360. doi: 10.1038/ni.1701 PMID: 19295632
- Imahori, K.; Uchida, T. Physiology and pathology of tau protein kinases in relation to Alzheimers disease. J. Biochem., 1997, 121(2), 179-188. PMID: 9089387
- Hernández, F.; Borrell, J.; Guaza, C.; Avila, J.; Lucas, J.J. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J. Neurochem., 2002, 83(6), 1529-1533. doi: 10.1046/j.1471-4159.2002.01269.x PMID: 12472906
- Lee, K.Y.; Clark, A.W.; Rosales, J.L.; Chapman, K.; Fung, T.; Johnston, R.N. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci. Res., 1999, 34(1), 21-29. doi: 10.1016/S0168-0102(99)00026-7 PMID: 10413323
- Tseng, H.C.; Zhou, Y.; Shen, Y.; Tsai, L.H. A survey of Cdk5 activator p35 and p25 levels in Alzheimers disease brains. FEBS Lett., 2002, 523(1-3), 58-62. doi: 10.1016/S0014-5793(02)02934-4 PMID: 12123804
- Noble, W.; Olm, V.; Takata, K.; Casey, E.; Mary, O.; Meyerson, J.; Gaynor, K.; LaFrancois, J.; Wang, L.; Kondo, T.; Davies, P.; Burns, M.; Veeranna; Nixon, R.; Dickson, D.; Matsuoka, Y.; Ahlijanian, M.; Lau, L.F.; Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 2003, 38(4), 555-565. doi: 10.1016/S0896-6273(03)00259-9 PMID: 12765608
- Wen, Y.; Planel, E.; Herman, M.; Figueroa, H.Y.; Wang, L.; Liu, L.; Lau, L.F.; Yu, W.H.; Duff, K.E. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci., 2008, 28(10), 2624-2632. doi: 10.1523/JNEUROSCI.5245-07.2008 PMID: 18322105
- Drewes, G.; Ebneth, A.; Preuss, U.; Mandelkow, E.M.; Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 1997, 89(2), 297-308. doi: 10.1016/S0092-8674(00)80208-1 PMID: 9108484
- Noble, W.; Planel, E.; Zehr, C.; Olm, V.; Meyerson, J.; Suleman, F.; Gaynor, K.; Wang, L.; LaFrancois, J.; Feinstein, B.; Burns, M.; Krishnamurthy, P.; Wen, Y.; Bhat, R.; Lewis, J.; Dickson, D.; Duff, K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6990-6995. doi: 10.1073/pnas.0500466102 PMID: 15867159
- Hampel, H.; Ewers, M.; Bürger, K.; Annas, P.; Mörtberg, A.; Bogstedt, A.; Frölich, L.; Schröder, J.; Schönknecht, P.; Riepe, M.W.; Kraft, I.; Gasser, T.; Leyhe, T.; Möller, H.J.; Kurz, A.; Basun, H. Lithium trial in Alzheimers disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry, 2009, 70(6), 922-931. doi: 10.4088/JCP.08m04606 PMID: 19573486
- Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord., 2016, 4(1), 27. doi: 10.1186/s40345-016-0068-y PMID: 27900734
- Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormö, M.; Nilsson, Y.; Radesäter, A.C.; Jerning, E.; Markgren, P.O.; Borgegård, T.; Nylöf, M.; Giménez-Cassina, A.; Hernández, F.; Lucas, J.J.; Díaz-Nido, J.; Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 2003, 278(46), 45937-45945. doi: 10.1074/jbc.M306268200 PMID: 12928438
- Nakashima, H.; Ishihara, T.; Suguimoto, P.; Yokota, O.; Oshima, E.; Kugo, A.; Terada, S.; Hamamura, T.; Trojanowski, J.Q.; Lee, V.M.Y.; Kuroda, S. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol., 2005, 110(6), 547-556. doi: 10.1007/s00401-005-1087-4 PMID: 16228182
- Engel, T.; Goñi-Oliver, P.; Lucas, J.J.; Avila, J.; Hernández, F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem., 2006, 99(6), 1445-1455. doi: 10.1111/j.1471-4159.2006.04139.x PMID: 17059563
- Selenica, M-L.; Jensen, H.S.; Larsen, A.K.; Pedersen, M.L.; Helboe, L.; Leist, M.; Lotharius, J. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br. J. Pharmacol., 2007, 152(6), 959-979. doi: 10.1038/sj.bjp.0707471 PMID: 17906685
- Naujok, O.; Lentes, J.; Diekmann, U.; Davenport, C.; Lenzen, S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res. Notes, 2014, 7(1), 273. doi: 10.1186/1756-0500-7-273 PMID: 24779365
- Navarro-Retamal, C.; Caballero, J. Molecular modeling of tau proline-directed protein kinase (PDPK) inhibitors. In: Computational Modeling of Drugs Against Alzheimers Disease; Roy, K., Ed.; Springer New York: New York, NY, 2018; pp. 305-345. doi: 10.1007/978-1-4939-7404-7_13
- Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415. doi: 10.1038/s41582-018-0013-z PMID: 29895964
- Courade, J.P.; Angers, R.; Mairet-Coello, G.; Pacico, N.; Tyson, K.; Lightwood, D.; Munro, R.; McMillan, D.; Griffin, R.; Baker, T.; Starkie, D.; Nan, R.; Westwood, M.; Mushikiwabo, M.L.; Jung, S.; Odede, G.; Sweeney, B.; Popplewell, A.; Burgess, G.; Downey, P.; Citron, M. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau. Acta Neuropathol., 2018, 136(5), 729-745. doi: 10.1007/s00401-018-1911-2 PMID: 30238240
- Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; Buee, L.; Zilka, N. A walk through tau therapeutic strategies. Acta Neuropathol. Commun., 2019, 7(1), 22. doi: 10.1186/s40478-019-0664-z PMID: 30767766
- Pradeepkiran, J.; Reddy, P. Structure based design and molecular docking studies for phosphorylated tau inhibitors in alzheimers disease. Cells, 2019, 8(3), 260. doi: 10.3390/cells8030260 PMID: 30893872
- Halliday, M.; Radford, H.; Zents, K.A.M.; Molloy, C.; Moreno, J.A.; Verity, N.C.; Smith, E.; Ortori, C.A.; Barrett, D.A.; Bushell, M.; Mallucci, G.R. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain, 2017, 140(6), 1768-1783. doi: 10.1093/brain/awx074 PMID: 28430857
- SantaCruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L.; Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McGowan, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hyman, B.; Hutton, M.; Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005, 309(5733), 476-481. doi: 10.1126/science.1113694 PMID: 16020737
- Guo, N.; Peng, Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac. J. Clin. Oncol., 2013, 9(1), 6-11. doi: 10.1111/j.1743-7563.2012.01535.x PMID: 22897979
- Choi, H.; Kim, H.J.; Yang, J.; Chae, S.; Lee, W.; Chung, S.; Kim, J.; Choi, H.; Song, H.; Lee, C.K.; Jun, J.H.; Lee, Y.J.; Lee, K.; Kim, S.; Sim, H.; Choi, Y.I.; Ryu, K.H.; Park, J.C.; Lee, D.; Han, S.H.; Hwang, D.; Kyung, J.; Mook-Jung, I. Acetylation changes tau interactome to degrade tau in Alzheimers disease animal and organoid models. Aging Cell, 2020, 19(1), e13081. doi: 10.1111/acel.13081 PMID: 31763743
- Tarjányi, O.; Haerer, J.; Vecsernyés, M.; Berta, G.; Stayer-Harci, A.; Balogh, B.; Farkas, K.; Boldizsár, F.; Szeberényi, J.; Sétáló, G., Jr Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci. Rep., 2022, 12(1), 5808. doi: 10.1038/s41598-022-09763-z PMID: 35388084
- Ohkusu-Tsukada, K.; Ito, D.; Takahashi, K. The role of proteasome inhibitor MG132 in 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int. Arch. Allergy Immunol., 2018, 176(2), 91-100. doi: 10.1159/000488155 PMID: 29669333
- Corpas, R.; Griñán-Ferré, C.; Palomera-Ávalos, V.; Porquet, D.; de Frutos, P.G.; Cozzolino, S.M.F.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C.; Cardoso, B.R. Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res., 2018, 65(4), e12515. doi: 10.1111/jpi.12515 PMID: 29907977
- Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of tau aggregation. Nat. Chem., 2018, 10(2), 170-176. doi: 10.1038/nchem.2889 PMID: 29359764
- Nixon, R.A. Autophagy in neurodegenerative disease: Friend, foe or turncoat? Trends Neurosci., 2006, 29(9), 528-535. doi: 10.1016/j.tins.2006.07.003 PMID: 16859759
- Penke, B.; Bogár, F.; Crul, T.; Sántha, M.; Tóth, M.; Vígh, L. Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int. J. Mol. Sci., 2018, 19(1), 325. doi: 10.3390/ijms19010325 PMID: 29361800
- Dickey, C.A.; Dunmore, J.; Lu, B.; Wang, J.W.; Lee, W.C.; Kamal, A.; Burrows, F.; Eckman, C.; Hutton, M.; Petrucelli, L. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J., 2006, 20(6), 753-755. doi: 10.1096/fj.05-5343fje PMID: 16464956
- Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med., 2004, 82(8), 488-499. doi: 10.1007/s00109-004-0549-9 PMID: 15168026
- Jilani, K.; Qadri, S.M.; Lang, F. Geldanamycin-induced phosphatidylserine translocation in the erythrocyte membrane. Cell. Physiol. Biochem., 2013, 32(6), 1600-1609. doi: 10.1159/000356596 PMID: 24335345
- Ochel, H.J.; Eichhorn, K.; Gademann, G. Geldanamycin: The prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones, 2001, 6(2), 105-112. doi: 10.1379/1466-1268(2001)0062.0.CO;2 PMID: 11599571
- Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 2003, 425(6956), 407-410. doi: 10.1038/nature01913 PMID: 14508491
- Vilenchik, M.; Solit, D.; Basso, A.; Huezo, H.; Lucas, B.; He, H.; Rosen, N.; Spampinato, C.; Modrich, P.; Chiosis, G. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol., 2004, 11(6), 787-797. doi: 10.1016/j.chembiol.2004.04.008 PMID: 15217612
- Hamano, T.; Gendron, T.F.; Causevic, E.; Yen, S.H.; Lin, W.L.; Isidoro, C.; DeTure, M.; Ko, L. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild- type tau expression. Eur. J. Neurosci., 2008, 27(5), 1119-1130. doi: 10.1111/j.1460-9568.2008.06084.x PMID: 18294209
- Berger, Z.; Ravikumar, B.; Menzies, F.M.; Oroz, L.G.; Underwood, B.R.; Pangalos, M.N.; Schmitt, I.; Wullner, U.; Evert, B.O.; OKane, C.J.; Rubinsztein, D.C. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet., 2006, 15(3), 433-442. doi: 10.1093/hmg/ddi458 PMID: 16368705
- Morita, T.; Sobue, K. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J. Biol. Chem., 2009, 284(40), 27734-27745. doi: 10.1074/jbc.M109.008177 PMID: 19648118
- Bresinsky, M.; Strasser, J.M.; Vallaster, B.; Liu, P.; McCue, W.M.; Fuller, J.; Hubmann, A.; Singh, G.; Nelson, K.M.; Cuellar, M.E.; Wilmot, C.M.; Finzel, B.C.; Ashe, K.H.; Walters, M.A.; Pockes, S. Structure-based design and biological evaluation of novel caspase-2 inhibitors based on the peptide AcVDVAD-CHO and the caspase-2-mediated tau cleavage sequence YKPVD314. ACS Pharmacol. Transl. Sci., 2022, 5(1), 20-40. doi: 10.1021/acsptsci.1c00251 PMID: 35059567
- Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490. doi: 10.1038/nchembio.96 PMID: 18587388
- Yu, Y.; Zhang, L.; Li, X.; Run, X.; Liang, Z.; Li, Y.; Liu, Y.; Lee, M.H.; Grundke-Iqbal, I.; Iqbal, K.; Vocadlo, D.J.; Liu, F.; Gong, C.X. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One, 2012, 7(4), e35277. doi: 10.1371/journal.pone.0035277 PMID: 22536363
- Selnick, H.G.; Hess, J.F.; Tang, C.; Liu, K.; Schachter, J.B.; Ballard, J.E.; Marcus, J.; Klein, D.J.; Wang, X.; Pearson, M.; Savage, M.J.; Kaul, R.; Li, T.S.; Vocadlo, D.J.; Zhou, Y.; Zhu, Y.; Mu, C.; Wang, Y.; Wei, Z.; Bai, C.; Duffy, J.L.; McEachern, E.J. Discovery of MK-8719, a potent o-glcnacase inhibitor as a potential treatment for tauopathies. J. Med. Chem., 2019, 62(22), 10062-10097. doi: 10.1021/acs.jmedchem.9b01090 PMID: 31487175
- ASN90 2022. Available from: https://www.alzforum.org/therapeutics/asn90
- Yuzwa, S.A.; Shan, X.; Macauley, M.S.; Clark, T.; Skorobogatko, Y.; Vosseller, K.; Vocadlo, D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol., 2012, 8(4), 393-399. doi: 10.1038/nchembio.797 PMID: 22366723
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; Leblanc, J.C.; Lillegaard, I.T.; Moldeus, P.; Mortensen, A.; Oskarsson, A.; Stankovic, I.; Waalkens-Berendsen, I.; Woutersen, R.A.; Andrade, R.J.; Fortes, C.; Mosesso, P.; Restani, P.; Arcella, D.; Pizzo, F.; Smeraldi, C.; Wright, M. Scientific opinion on the safety of green tea catechins. EFSA J., 2018, 16(4), e05239. PMID: 32625874
- Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci., 2011, 12(9), 5592-5603. doi: 10.3390/ijms12095592 PMID: 22016611
- Sonawane, S.K.; Chinnathambi, S. Epigallocatechin-3-gallate modulates tau post-translational modifications and cytoskeletal network. Oncotarget, 2021, 12(11), 1083-1099. doi: 10.18632/oncotarget.27963 PMID: 34084282
- Seidler, P.M.; Murray, K.A.; Boyer, D.R.; Ge, P.; Sawaya, M.R.; Hu, C.J.; Cheng, X.; Abskharon, R.; Pan, H.; DeTure, M.A.; Williams, C.K.; Dickson, D.W.; Vinters, H.V.; Eisenberg, D.S. Structure-based discovery of small molecules that disaggregate Alzheimers disease tissue derived tau fibrils in vitro. Nat. Commun., 2022, 13(1), 5451. doi: 10.1038/s41467-022-32951-4 PMID: 36114178
- Inuzuka, H.; Liu, J.; Wei, W.; Rezaeian, A.H. PROTAC technology for the treatment of Alzheimers disease: Advances and perspectives. Acta Materia Medica, 2022, 1(1), 24-41. doi: 10.15212/AMM-2021-0001 PMID: 35237768
- Li, C.; Götz, J. Tau-based therapies in neurodegeneration: Opportunities and challenges. Nat. Rev. Drug Discov., 2017, 16(12), 863-883. doi: 10.1038/nrd.2017.155 PMID: 28983098
Supplementary files
