Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease
- Authors: Nagori K.1, Pradhan M.2, Sharma M.3, Ajazuddin 4, Badwaik H.5, Nakhate K.6
-
Affiliations:
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research
- Department of Pharmaceutical Technology, Gracious College of Pharmacy
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Research
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research
- Department of Pharmacology, Shri Vile Parle Kelavani Mandals Institute of Pharmacy
- Issue: Vol 21, No 1 (2024)
- Pages: 50-68
- Section: Medicine
- URL: https://cardiosomatics.ru/1567-2050/article/view/643709
- DOI: https://doi.org/10.2174/0115672050306008240321034006
- ID: 643709
Cite item
Full Text
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimers disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
About the authors
Kushagra Nagori
Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research
Email: info@benthamscience.net
Madhulika Pradhan
Department of Pharmaceutical Technology, Gracious College of Pharmacy
Email: info@benthamscience.net
Mukesh Sharma
Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research
Email: info@benthamscience.net
Ajazuddin
Department of Pharmaceutics, College of Pharmaceutical Sciences and Research
Email: info@benthamscience.net
Hemant Badwaik
Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research
Email: info@benthamscience.net
Kartik Nakhate
Department of Pharmacology, Shri Vile Parle Kelavani Mandals Institute of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
References
- Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res., 2011, 221(2), 488-498. doi: 10.1016/j.bbr.2009.12.046 PMID: 20060422
- Robinson, L.; Platt, B.; Riedel, G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res., 2011, 221(2), 443-465. doi: 10.1016/j.bbr.2011.01.055 PMID: 21315109
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimers disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115. doi: 10.2174/1570159X13666150716165726 PMID: 26813123
- Iarkov, A.; Mendoza, C.; Echeverria, V. Cholinergic receptor modulation as a target for preventing dementia in parkinsons disease. Front. Neurosci., 2021, 15, 665820. doi: 10.3389/fnins.2021.665820 PMID: 34616271
- Fibiger, H.C. Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence. Trends Neurosci., 1991, 14(6), 220-223. doi: 10.1016/0166-2236(91)90117-D PMID: 1716012
- Jahed, F.J.; Rahbarghazi, R.; Shafaei, H.; Rezabakhsh, A.; Karimipour, M. Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimers disease-like pathology on the human neuroblastoma cells. Brain Res. Bull., 2021, 172, 180-189. doi: 10.1016/j.brainresbull.2021.04.014 PMID: 33895268
- Dunnett, S.B.; Fibiger, H.C. Role of forebrain cholinergic systems in learning and memory: Relevance to the cognitive deficits of aging and Alzheimers dementia. Prog. Brain Res., 1993, 98, 413-420. doi: 10.1016/S0079-6123(08)62425-5 PMID: 8248529
- Han, C. Corrigendum to "New mechanism of neuroinflflammation in Alzheimers disease: The activation of NLRP3 inflflammasome mediated by gut microbiota" Progress in Neuropsychopharmacology & Biological Psychiatry 100 (2020) 109884. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 114, 110482. doi: 10.1016/j.pnpbp.2021.110482 PMID: 34838637
- Sohn, E.; Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Kim, J.H.; Jeong, S.J. Elaeagnus glabra f. oxyphylla attenuates scopolamine-induced learning and memory impairments in mice by improving cholinergic transmission via activation of CREB/NGF signaling. Nutrients, 2019, 11(6), 1205. doi: 10.3390/nu11061205 PMID: 31141948
- Nagori, K.; Nakhate, K.T.; Yadav, K.; Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for alzheimers disease: Preclinical to clinical trial insights. Fut. Pharmacol., 2023, 3(4), 877-907. doi: 10.3390/futurepharmacol3040053
- Ko, Y.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 6,7,4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol., 2018, 826, 140-147. doi: 10.1016/j.ejphar.2018.02.048 PMID: 29510125
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimers disease. Arch. Pharm. Res., 2013, 36(4), 375-399. doi: 10.1007/s12272-013-0036-3 PMID: 23435942
- (a) Hampel, H.; Mesulam, M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 2018, 141(7), 1917-1933. (b) Thakur, A.; Nagori, K.; Rao, A.; Rai, N. Use of Deep Learning Approaches for the Prediction of Diseases from Medical Images. In Medical Imaging Informatics: Machine learning, deep learning and big data analytics; 2024; pp. 115138. doi: 10.1093/brain/awy132
- Perry, E.K.; Tomlinson, B.E.; Blessed, G.; Bergmann, K.; Gibson, P.H.; Perry, R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ, 1978, 2(6150), 1457-1459. doi: 10.1136/bmj.2.6150.1457 PMID: 719462
- Chen, Q.; Wu, J.; Dong, X.; Yin, H.; Shi, X.; Su, S.; Che, B.; Li, Y.; Yang, J. Gut flora-targeted photobiomodulation therapy improves senile dementia in an Aß-induced Alzheimers disease animal model. J. Photochem. Photobiol. B, 2021, 216, 112152. doi: 10.1016/j.jphotobiol.2021.112152 PMID: 33610085
- Gomez-Amaya, S.M.; Barbe, M.F.; Lamarre, N.S.; Brown, J.M.; Braverman, A.S.; Ruggieri, M.R., Sr Neuromuscular nicotinic receptors mediate bladder contractions following bladder reinnervation with somatic to autonomic nerve transfer after decentralization by spinal root transection. J. Urol., 2015, 193(6), 2138-2145. doi: 10.1016/j.juro.2014.10.046 PMID: 25444958
- Jonsson, M.; Gurley, D.; Dabrowski, M.; Larsson, O.; Johnson, E.C.; Eriksson, L.I. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: A possible explanation for the train-of-four fade. Anesthesiology, 2006, 105(3), 521-533. doi: 10.1097/00000542-200609000-00016 PMID: 16931985
- Paterson, D.; Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol., 2000, 61(1), 75-111. doi: 10.1016/S0301-0082(99)00045-3 PMID: 10759066
- Kleeman, E.; Nakauchi, S.; Su, H.; Dang, R.; Wood, M.A.; Sumikawa, K. Impaired function of α2-containing nicotinic acetylcholine receptors on oriens-lacunosum moleculare cells causes hippocampus-dependent memory impairments. Neurobiol. Learn. Mem., 2016, 136, 13-20. doi: 10.1016/j.nlm.2016.09.010 PMID: 27660076
- Charpantier, E.; Besnard, F.; Graham, D.; Sgard, F. Diminution of nicotinic receptor alpha 3 subunit mRNA expression in aged rat brain. Brain Res. Dev. Brain Res., 1999, 118(1-2), 153-158. doi: 10.1016/S0165-3806(99)00157-1 PMID: 10611514
- Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J. Interactions of atropine with heterologously expressed and native alpha 3 subunit-containing nicotinic acetylcholine receptors. Br J Pharmacol, 2003, 138(5), 801-810. doi: 10.1038/sj.bjp.0705124
- Poth, K.; Nutter, T.J.; Cuevas, J.; Parker, M.J.; Adams, D.J.; Luetje, C.W. Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci, 1997, 17(2), 586-596. doi: 10.1523/JNEUROSCI.17-02-00586.1997
- Dallanoce, C.; Matera, C.; Amici, M.D.E.; Rizzi, L.; Pucci, L.; Gotti, C.; Clementi, F.; Micheli, C.D.E.; Farmaceutiche, S.; Pratesi, P. The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24(7), 543-551.
- Gao, Y.; Kuwabara, H.; Spivak, C.E.; Xiao, Y.; Kellar, K.; Ravert, H.T.; Kumar, A.; Alexander, M.; Hilton, J.; Wong, D.F.; Dannals, R.F.; Horti, A.G. Discovery of (-)-7-methyl-2-exo-3′-(6-18Ffluoropyridin-2-yl)-5′-pyridinyl-7-azabicyclo2.2.1heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (alpha4β2-nAChR) with optimal positron emission tomography imaging properties. J. Med. Chem., 2008, 51(15), 4751-4764. doi: 10.1021/jm800323d PMID: 18605717
- Vincler, M.; Mcintosh, J.M. Targeting the alpha9alpha10 nicotinic acetylcholine receptor to treat severe pain. Expert. Opin. Ther. Targets, 2007, 11(7), 891-877.
- Bagdas, D.; AlSharari, S.D.; Freitas, K.; Tracy, M.; Damaj, M.I. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem. Pharmacol., 2015, 97(4), 590-600. doi: 10.1016/j.bcp.2015.04.013 PMID: 25931144
- Bloem, B.; Poorthuis, R.B.; Mansvelder, H.D. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front. Neural Circuits, 2014, 8, 17. doi: 10.3389/fncir.2014.00017 PMID: 24653678
- Brown, R.W.B.; Collins, A.C.; Lindstrom, J.M.; Whiteaker, P. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem, 2007, 103(1), 204-215. doi: 10.1111/j.1471-4159.2007.04700.x
- Collingridge, G.L.; Olsen, R.W.; Peters, J.; Spedding, M.; Neuropharmacology, A. A nomenclature for ligand-gated ion channels. Neuropharmacology, 2009, 56(1), 2-5. doi: 10.1016/j.neuropharm.2008.06.063 PMID: 18655795
- Quik, M.; Perez, X.A.; Grady, S.R. Role of a 6 nicotinic receptors in CNS dopaminergic function. Relevan. Addict. Neurolog. Disord., 2011, 82, 873-882. doi: 10.1016/j.bcp.2011.06.001 PMID: 21684266
- Tietje, K.R.; Anderson, D.J.; Bitner, R.S.; Blomme, E.A.; Brackemeyer, P.J.; Briggs, C.A.; Browman, K.E.; Bury, D.; Curzon, P.; Drescher, K.U. Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther, 2008, 14(1), 65-82. doi: 10.1111/j.1527-3458.2008.00037.x
- Lykhmus, O.; Voytenko, L.P.; Lips, K.S.; Bergen, I. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front Cell Neurosci, 2017, 11, 282. doi: 10.3389/fncel.2017.00282
- Vincler, M.; Mcintosh, J.M.; Absalom, N.; Chebib, M.; Bele, A. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol, 2009, 78(7), 693-702. doi: 10.1016/j.bcp.2009.05.020
- Kellar, J.; Yasuda, R.P.; Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J.; Perez, D.M.; Barabino, B.; Vailati, S.; Moretti, M. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity A4β2, and increases A5α4β2, nicotinic receptor surface expression. PLoS One, 2008, 11, 519-528. doi: 10.1523/JNEUROSCI.3666-07.2008
- Freed, A.S.; Schwarz, A.C.; Brei, B.K.; Candadai, C.S.V.; Thies, J.; Mah, J.K.; Chabra, S.; Wang, L.; Innes, A.M.; Bennett, J.T. CHRNB1-associated congenital myasthenia syndrome: Expanding the clinical spectrum. Am. J. Med. Genet. A., 2021, 185(3), 827-835. doi: 10.1002/ajmg.a.62011 PMID: 33296147
- Levin, E.D. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem. Pharmacol., 2013, 86(8), 1145-1152. doi: 10.1016/j.bcp.2013.07.021 PMID: 23928190
- Nichols, W.A.; Henderson, B.J.; Marotta, C.B.; Yu, C.Y.; Richards, C.; Dougherty, D.A.; Lester, H.A.; Cohen, B.N. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLoS One, 2016, 11(6), e0158032. doi: 10.1371/journal.pone.0158032 PMID: 27336596
- Samochocki, M.; Zerlin, M.; Jostock, R.; Pj, G.K. Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand Suppl, 2000, 176, 68-73.
- Gharpure, A.; Teng, J.; Zhuang, Y.; Noviello, C.M.; Walsh, R.M., Jr; Cabuco, R.; Howard, R.J.; Zaveri, N.T.; Lindahl, E.; Hibbs, R.E. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron, 2019, 104(3), 501-511.e6. doi: 10.1016/j.neuron.2019.07.030 PMID: 31488329
- Skok, V.I. Nicotinic acetylcholine receptors in autonomic Ganglia. Auton Neurosci, 2002, 97, 1-11.
- Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.H.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs, 2000, 32(S1), 1-112, 1-112. doi: 10.1080/02791072.2000.10736099 PMID: 11280926
- Lee, S.H.; Barrie, E.S.; Sadee, W.; Smith, R.M. Nicotine Dependence and the CHRNA5/CHRNA3/CHRNB4 Nicotinic Receptor Regulome; Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813035-3.00043-5
- Spindle, M.S.; Parsa, P.V.; Bowles, S.G.; DSouza, R.D.; Vijayaraghavan, S. A dominant role for the beta 4 nicotinic receptor subunit in nicotinic modulation of glomerular microcircuits in the mouse olfactory bulb. J. Neurophysiol., 2018, 120(4), 2036-2048. doi: 10.1152/jn.00925.2017 PMID: 30089021
- Grailhe, R.; De Carvalho, L.P.; Paas, Y.; Le Poupon, C.; Soudant, M.; Bregestovski, P.; Changeux, J.P.; Corringer, P.J. Distinct subcellular targeting of fluorescent nicotinic α3β4 and serotoninergic 5-HT3A receptors in hippocampal neurons. Eur. J. Neurosci., 2004, 19(4), 855-862. doi: 10.1111/j.1460-9568.2004.03153.x PMID: 15009132
- Yang, K.; Jin, G.; Wu, J. Mysterious A6-containing NAChRs. Funct. Pharmacolog. Pathophysiol.., 2009, 30, 740-751. doi: 10.1038/aps.2009.63 PMID: 19498417
- Deligia, F.; Murineddu, G.; Gotti, C.; Ragusa, G.; Fasoli, F.; Sciaccaluga, M.; Plutino, S.; Fucile, S.; Loriga, G.; Asproni, B.; Pinna, G.A. Pyridinyl- and pyridazinyl-3,6-diazabicyclo3.1.1heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors. Eur. J. Med. Chem., 2018, 152, 401-416. doi: 10.1016/j.ejmech.2018.04.026 PMID: 29751234
- Barabino, B.; Vailati, S.; Moretti, M.; Mcintosh, J.M.; Longhi, R.; Clementi, F.; Gotti, C. An alpha4beta4 nicotinic receptor subtype is present in chick retina: identification, characterization and pharmacological comparison with the transfected alpha4beta4 and alpha6beta4 subtypes. Mol Pharmacol, 2001, 59(6), 1410-1417.
- Evans, N.M.; Bose, S.; Benedetti, G.; Zwart, R.; Pearson, K.H.; Mcphie, G.I.; Craig, P.J.; Benton, J.P.; Volsen, S.G.; Sher, E. Expression and functional characterisation of a human chimeric nicotinic receptor with alpha6beta4 properties. Eur J Pharmacol, 2003, 466(1-2), 31-39. doi: 10.1016/S0014-2999(03)01540-1
- Yang, K.; Jin, G.; Wu, J. Mysterious α6-containing nAChRs: Function, pharmacology, and pathophysiology. Acta Pharmacol. Sin., 2009, 30(6), 740-751. doi: 10.1038/aps.2009.63 PMID: 19498417
- Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.; Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol., 2009, 78(7), 703-711. doi: 10.1016/j.bcp.2009.05.024 PMID: 19481063
- Moretti, M.; Zoli, M.; George, A.A.; Lukas, R.J.; Pistillo, F.; Maskos, U.; Whiteaker, P.; Gotti, C. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: Biochemical and pharmacological characterization. Mol. Pharmacol., 2014, 86(3), 306-317. doi: 10.1124/mol.114.093377 PMID: 25002271
- Thomsen, M.S.; Zwart, R.; Ursu, D.; Jensen, M.M.; Pinborg, L.H.; Gilmour, G.; Wu, J.; Sher, E.; Mikkelsen, J.D. α7 and β2 nicotinic acetylcholine receptor subunits form heteromeric receptor complexes that are expressed in the human cortex and display distinct pharmacological properties. PLoS One, 2015, 10(6), e0130572. doi: 10.1371/journal.pone.0130572 PMID: 26086615
- Shao, X.M.; Tan, W.; Xiu, J.; Puskar, N.; Fonck, C.; Lester, H.A.; Feldman, J.L. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J. Neurosci., 2008, 28(2), 519-528. doi: 10.1523/JNEUROSCI.3666-07.2008 PMID: 18184794
- Mesulam, M.M.; Mufson, E.J.; Levey, A.I.; Wainer, B.H. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol., 1983, 214(2), 170-197. doi: 10.1002/cne.902140206 PMID: 6841683
- Woolf, N. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol., 1991, 37(6), 475-524. doi: 10.1016/0301-0082(91)90006-M PMID: 1763188
- Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 2016, 91(6), 1199-1218. doi: 10.1016/j.neuron.2016.09.006 PMID: 27657448
- Maurer, S.V.; Williams, C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol., 2017, 8, 1489. doi: 10.3389/fimmu.2017.01489 PMID: 29167670
- Yi, F.; Catudio-Garrett, E.; Gábriel, R.; Wilhelm, M.; Erdelyi, F.; Szabo, G.; Deisseroth, K.; Lawrence, J. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front. Synaptic Neurosci., 2015, 7, 4. doi: 10.3389/fnsyn.2015.00004 PMID: 25798106
- Blusztajn, J.K.; Rinnofner, J. Intrinsic cholinergic neurons in the hippocampus: Fact or artifact? Front. Synaptic Neurosci., 2016, 8, 6-11. doi: 10.3389/fnsyn.2016.00006 PMID: 27014052
- Dautan, D.; Bay, H.H.; Bolam, J.P.; Gerdjikov, T.V.; Segovia, M.J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1-10. doi: 10.3389/fnana.2016.00001 PMID: 26834571
- Erskine, D.; Taylor, J.P.; Bakker, G.; Brown, A.J.H.; Tasker, T.; Nathan, P.J. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov. Today, 2019, 24(12), 2307-2314. doi: 10.1016/j.drudis.2019.08.009 PMID: 31499186
- Agostinelli, L.J.; Geerling, J.C.; Scammell, T.E. Basal forebrain subcortical projections. Brain Struct. Funct., 2019, 224(3), 1097-1117. doi: 10.1007/s00429-018-01820-6 PMID: 30612231
- Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimers disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28. doi: 10.1016/j.brainresbull.2013.12.004 PMID: 24333192
- Zaborszky, L.; Duque, A.; Gielow, M.; Gombkoto, P.; Nadasdy, Z.; Somogyi, J. Organization of the basal forebrain cholinergic projection system: Specific or diffuse? The Rat Nervous System, 2015, , 491-507. doi: 10.1016/B978-0-12-374245-2.00019-X
- Simon, P.A.; Jazat, P.F.; Dutar, P.; Epelbaum, J.; Bassant, M.H. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats. J. Neurosci., 2006, 26(35), 9038-9046. doi: 10.1523/JNEUROSCI.1401-06.2006 PMID: 16943562
- Ahmed, N.Y.; Knowles, R.; Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci., 2019, 12, 204. doi: 10.3389/fnmol.2019.00204 PMID: 31551706
- Gourgues, H.F.; Jegouic, K.; Vaucher, E. Topographic organization of cholinergic innervation from the basal forebrain to the visual cortex in the rat. Front. Neural Circuits, 2018, 12, 19. doi: 10.3389/fncir.2018.00019 PMID: 29662442
- Kondo, H.; Zaborszky, L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol., 2016, 524(12), 2503-2515. doi: 10.1002/cne.23967 PMID: 26780730
- Cantero, J.L.; Atienza, M.; Lage, C.; Zaborszky, L.; Vilaplana, E.; Garcia, L.S.; Pozueta, A.; Rodriguez, R.E.; Blesa, R.; Alcolea, D.; Lleo, A.; Juan, S.P.; Fortea, J. Atrophy of basal forebrain initiates with tau pathology in individuals at risk for alzheimers disease. Cereb. Cortex, 2020, 30(4), 2083-2098. doi: 10.1093/cercor/bhz224 PMID: 31799623
- Ohno, M. Alzheimers therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res. Bull., 2016, 126(Pt 2), 183-198. doi: 10.1016/j.brainresbull.2016.04.007 PMID: 27093940
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimers disease. Brain, 2018, 141(7), 1917-1933. doi: 10.1093/brain/awy132 PMID: 29850777
- Tiwari, P.; Dwivedi, S.; Singh, M.P.; Mishra, R.; Chandy, A. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2013, 3(5), 413-420. doi: 10.1016/S2222-1808(13)60094-8
- Van der Zee, E.A.; Luiten, P.G.M. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: A review of immunocytochemical localization in relation to learning and memory. Prog. Neurobiol., 1999, 58(5), 409-471. doi: 10.1016/S0301-0082(98)00092-6 PMID: 10380240
- Ishii, M.; Kurachi, Y. Muscarinic acetylcholine receptors. Curr. Pharm. Des., 2006, 12(28), 3573-3581. doi: 10.2174/138161206778522056
- Graef, S.; Schönknecht, P.; Sabri, O.; Hegerl, U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology, 2011, 215(2), 205-229. doi: 10.1007/s00213-010-2153-8 PMID: 21212938
- Smail, M.A.; Soles, J.L.; Karwoski, T.E.; Rubin, R.T.; Rhodes, M.E. Sexually diergic hypothalamic-pituitary-adrenal axis responses to selective and non-selective muscarinic antagonists prior to cholinergic stimulation by physostigmine in rats. Brain Res. Bull., 2018, 137, 23-34. doi: 10.1016/j.brainresbull.2017.11.002 PMID: 29122691
- Bock, A.; Schrage, R.; Mohr, K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology, 2018, 136(Pt C), 427-437. doi: 10.1016/j.neuropharm.2017.09.024 PMID: 28935216
- Zenko, D.; Hislop, J.N.S.C. Regulation and trafficking of muscarinic acetylcholine receptors. Neuropharmacology, 2017, 136(Pt C), 374-382. doi: 10.1016/j.neuropharm.2017.11.017 PMID: 29138081
- Drever, B.D.; Riedel, G.; Platt, B. The cholinergic system and hippocampal plasticity. Behav. Brain Res., 2011, 221(2), 505-514. doi: 10.1016/j.bbr.2010.11.037 PMID: 21130117
- Thal, D.M.; Sun, B.; Feng, D.; Nawaratne, V.; Leach, K.; Felder, C.C.; Bures, M.G.; Evans, D.A.; Weis, W.I.; Bachhawat, P.; Kobilka, T.S.; Sexton, P.M.; Kobilka, B.K.; Christopoulos, A. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531(7594), 335-340. doi: 10.1038/nature17188 PMID: 26958838
- Marsango, S.; Ward, R.J.; Curto, A.E.; Milligan, G.S.C. Muscarinic receptor oligomerization. Neuropharmacology, 2017, 136(Pt C), 401-410. doi: 10.1016/j.neuropharm.2017.11.023 PMID: 29146505
- van der Westhuizen, E.T.; Choy, K.H.C.; Valant, C.; Nickson, M.S.; Bradley, S.J.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front. Pharmacol., 2021, 11, 606656. doi: 10.3389/fphar.2020.606656 PMID: 33584282
- Schledwitz, A.; Sundel, M.H.; Alizadeh, M.; Hu, S.; Xie, G.; Raufman, J. Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int. J. Mol. Sci., 2021, 22(23), 13153.
- Saternos, H.C.; Almarghalani, D.A.; Gibson, H.M.; Meqdad, M.A.; Antypas, R.B.; Lingireddy, A.; Aboualaiwi, W.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomi., 2022, 50(1), 1-9. doi: 10.1152/physiolgenomics.00062.2017
- Naganawa, M.; Nabulsi, N.; Henry, S.; Matuskey, D.; Lin, S.; Navarro, A.; Gao, H.; Ropchan, J.; Labaree, D.; Carson, R.E. First-in-human assessment of 11C-LSN3172176, an M1 muscarinic acetylcholine receptor PET radiotracer. J. Nucl. Med., 2020, 62(4), 553-560. doi: 10.2967/jnumed.120.246967
- Moran, S.P.; Maksymetz, J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci., 2020, 40, 1006-1020. doi: 10.1016/j.tips.2019.10.007.Targeting
- Scarpa, M.; Hesse, S.; Bradley, S.J. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease- modifying effects in Alzheimers disease? Adv. Pharmacol., 2020, 88, 277-310. doi: 10.1016/bs.apha.2019.12.003 PMID: 32416870
- Uslaner, J.M.; Kuduk, S.D.; Wittmann, M.; Lange, H.S.; Fox, S.V.; Min, C.; Pajkovic, N.; Harris, D.; Cilissen, C.; Mahon, C.; Mostoller, K.; Warrington, S.; Beshore, D.C. Preclinical to human translational pharmacology of the novel M 1 positive allosteric modulator MK-7622. J. Pharmacol. Exp. Ther., 2018, 365(3), 556-566. doi: 10.1124/jpet.117.245894 PMID: 29563325
- Sales, M.E.; Español, A.J.; Salem, A.R.; Pulido, P.M.; Sanchez, Y.; Sanchez, F. Role of muscarinic acetylcholine receptors in breast cancer: Design of metronomic chemotherapy. Curr Clin Pharmacol., 2019, 14(2), 91-100. doi: 10.2174/1574884714666181203095437
- Ruan, Y.; Patzak, A.; Pfeiffer, N.; Gericke, A. Muscarinic acetylcholine receptors in the retinatherapeutic implications. Int J Mol Sci., 2021, 22(9), 4989.
- Xu, J.; Hu, Y.; Kaindl, J.; Gmeiner, P.; Jin, C.; Kobilka, B.K.; Maeda, S.; Niu, X.; Li, H. Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Mol. Cell, 2019, 75(1), 53-65.e7. doi: 10.1016/j.molcel.2019.04.028
- Romberg, C. Impaired object-location learning and recognition memory but enhanced sustained attention in M2 muscarinic receptor-deficient mice. Psychopharmacology., 2018, 235(12), 3495-3508. doi: 10.1007/s00213-018-5065-7
- Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560. doi: 10.1038/nrd4295 PMID: 24903776
- Wang, L.; Xu, J.; Xia, Y.; Yin, K.; Li, Z.; Li, B.; Wang, W.; Xu, H.; Yang, L. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer. Oncogenesis, 2018, 7(11), 88. doi: 10.1038/s41389-018-0099-6
- Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Wess, J.; Kobilka, B.K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482(7386), 552-556. doi: 10.1038/nature10867 PMID: 22358844
- Suriyo, T.; Chotirat, S.; Auewarakul, C.U. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol Lett., 2019, 17(1), 1357-1362. doi: 10.3892/ol.2018.9663
- Costa, A.; Haage, V.; Yang, S.; Wegner, S.; Ugursu, B.; Rex, A.; Kronenberg, G.; Gertz, K.; Wolf, S.A.; Kettenmann, H. Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain Behav. Immun., 2020, 91, 89-104. doi: 10.1016/j.bbi.2020.09.008 PMID: 32927021
- Hering, N.A.; Liu, V.; Kim, R.; Weixler, B.; Droeser, R.A.; Arndt, M.; Pozios, I.; Beyer, K.; Kreis, M.E.; Seeliger, H. Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers, 2021, 13(13), 3220.
- Nicklas, P.R.; Kiefer, M.L.; Whalen, M.A.; Stewart, M.T.; Mosura, D.E.; Bennett, E.M.; Hawley, W.R.; McLaughlin, P.J. Muscarinic M1, but not M4, receptor antagonism impairs divided attention in male rats. Pharmacol. Biochem. Behav., 2021, 205, 173184. doi: 10.1016/j.pbb.2021.173184 PMID: 33836220
- Wang, J.; Wu, M.; Wu, L.; Xu, Y.; Li, F.; Wu, Y.; Popov, P.; Wang, L.; Bai, F.; Zhao, S. The structural study of mutation-induced inactivation of human muscarinic receptor M4. IUCrJ, 2020, 7(Pt 2), 294-305. doi: 10.1107/S2052252520000597
- Paderina, D.Z.; Fedorenko, O.Y.; Tenin, G.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. Association of cholinergic muscarinic M4 receptor gene polymorphism with schizophrenia. Appl. Clin. Genet., 2020, 13, 97-105.
- Takai, K.; Enomoto, T. Discovery and development of muscarinic acetylcholine m4 activators as promising therapeutic agents for CNS diseases. Chem. Pharm. Bull., 2018, 66(1), 37-44.
- Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci., 2019, 116(51), 26001-26007. doi: 10.1073/pnas.1914446116
- Scherbaum, I.; Heidecke, H.; Bunte, K.; Peters, U.; Beikler, T. Autoantibodies against m 5 -muscarinic and beta 1 -adrenergic receptors in periodontitis patients. 2020, 12, 16609-16620.
- Wen, J. Interactions of the Α3β2 nicotinic acetylcholine receptor interfaces with α-conotoxin LsIA and its carboxylated C-terminus analogue: Molecular dynamics simulations. Mar. Drugs., 2020, 18(7), 349.
- Valentine, G.; Sofuoglu, M. Cognitive effects of nicotine: Recent progress. Curr Neuropharmacol, 2018, 16(4), 403-414. doi: 10.2174/1570159X15666171103152136
- Xu, M.; Zhu, X.; Yu, J.; Yu, J.; Luo, S.; Wang, X. The crystal structure of Ac-AChBP in complex with α-conotoxin Lvia reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell, 2017, 8(9), 675-685. doi: 10.1007/s13238-017-0426-2 PMID: 28585176
- Alvin, V. Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tob Res., 2019, 21(3), 383-394.
- Gharpure, A.; Noviello, C.M.; Hibbs, R.E. Progress in nicotinic receptor structural biology. Neuropharmacology, 2020, 171, 108086. doi: 10.1016/j.neuropharm.2020.108086 PMID: 32272141
- Kouvatsos, N.; Giastas, P.; Chroni-Tzartou, D.; Poulopoulou, C.; Tzartos, S.J. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Proc. Natl. Acad. Sci., 2016, 113(34), 9635-9640. doi: 10.1073/pnas.1602619113 PMID: 27493220
- Ba, S.M.G.; Metherate, R. Enhanced sensorycognitive processing by activation of nicotinic acetylcholine receptors. Nicotine Tob Res., 2019, 21(3), 377-382. doi: 10.1093/ntr/nty134
- Ween, H.; Thorin-Hagene, K.; Andersen, E.; Grønlien, J.H.; Lee, C.H.; Gopalakrishnan, M.; Malysz, J. α3 and α7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells. Neurochem. Int., 2010, 57(3), 269-277. doi: 10.1016/j.neuint.2010.06.005 PMID: 20558224
- Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther., 2013, 137(1), 22-54. doi: 10.1016/j.pharmthera.2012.08.012 PMID: 22925690
- Wu, T.; Wang, Y.; Shi, W.; Zhang, B.Q.; Raelson, J.; Yao, Y.M.; Wu, H.D.; Xu, Z.X.; Blanchet, M.F.C.; Ledoux, J.; Blunck, R.; Sheng, J.Z.; Hu, S.J.; Luo, H.; Wu, J. A variant in the nicotinic acetylcholine receptor alpha 3 subunit gene is associated with hypertension risks in hypogonadic patients. Front. Genet., 2020, 11, 539862. doi: 10.3389/fgene.2020.539862 PMID: 33329690
- Baradaran, R.; Anbarkeh, F.R.; Delavar, A.; Khorasgani, E.M.; Rahimian, N.; Abbasi, Y.; Jaberi, N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J. Chem. Neuroanat., 2021, 116, 101977. doi: 10.1016/j.jchemneu.2021.101977 PMID: 34052301
- Yu, W.F.; Nordberg, A.; Ravid, R.; Guan, Z.Z. Correlation of oxidative stress and the loss of the nicotinic receptor alpha4 subunit in the temporal cortex of patients with Alzheimers disease. Neurosci. Lett., 2003, 338(1), 13-16. doi: 10.1016/S0304-3940(02)01361-7 PMID: 12565129
- Quijano Cardé, N.A.; Shaw, J.; Carter, C.; Kim, S.; Stitzel, J.A.; Venkatesh, S.K.; Ramchandani, V.A.; De Biasi, M. Mutation of the α5 nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology, 2022, 216, 109170. doi: 10.1016/j.neuropharm.2022.109170 PMID: 35752273
- Sun, H.; Ma, X. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells. Exp. Toxicol. Pathol., 2015, 67(9), 477-482. doi: 10.1016/j.etp.2015.07.001 PMID: 26205096
- Zhang, Y.; Jia, Y.; Li, P. Reciprocal activation of A5-NAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J. Genet. Genomics, 2017, 44, 355-362. doi: 10.1016/j.jgg.2017.03.003 PMID: 28750889
- Jia, Y.; Zhang, Q.; Liu, Z.; Pan, P.; Jia, Y.; Zhu, P.; Jiao, Y.; Kang, G.; Ma, X. The role of α5-nicotinic acetylcholine receptor/NLRP3 signaling pathway in lung adenocarcinoma cell proliferation and migration. Toxicology, 2022, 469, 153120. doi: 10.1016/j.tox.2022.153120 PMID: 35131329
- Gu, S.; Matta, J.A.; Davini, W.B.; Dawe, G.B.; Lord, B.; Bredt, D.S. α6-Containing nicotinic acetylcholine receptor reconstitution involves mechanistically distinct accessory components. Cell Rep., 2019, 26(4), 866-874.e3. doi: 10.1016/j.celrep.2018.12.103 PMID: 30673609
- Cardenas, A.; Elabd, M.; Lotfipour, S. Specificity of a rodent alpha(α)6 nicotinic acetylcholine receptor subunit antibody. Psychopharmacology, 2020, 237(1), 283-285. doi: 10.1007/s00213-019-05413-x PMID: 31786649
- Gao, F.; Chen, D.; Ma, X.; Sudweeks, S.; Jordan, T.; Gao, M.; Turner, D.; Eaton, J.B.; Michael, J.; Lukas, R.J. Version of Record, 2019. Available from: Https://Www.Sciencedirect.Com/Science/Article/Pii/S002839081830772X
- Tofighi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology, 2021, 85, 245-253. doi: 10.1016/j.neuro.2021.06.002 PMID: 34111468
- Li, H.; Gao, J.; Chang, Y.; Li, K.; Wang, L.; Ju, C.; Zhang, F. JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF- κB-mediated inflammation. Int. Immunopharmacol., 2021, 96, 107726. doi: 10.1016/j.intimp.2021.107726 PMID: 33975230
- Yang, T.; Xiao, T.; Sun, Q.; Wang, K. The current agonists and positive allosteric modulators of α 7 nAChR for CNS indications in clinical trials. Acta Pharm. Sin. B, 2017, 7(6), 611-622. doi: 10.1016/j.apsb.2017.09.001 PMID: 29159020
- Potasiewicz, A.; Faron-Gorecka, A.; Popik, P.; Nikiforuk, A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav. Brain Res., 2021, 409, 113338. doi: 10.1016/j.bbr.2021.113338 PMID: 33940049
- Liu, Q.; Tang, Z.; Gan, Y.; Wu, W.; Kousari, A.; La Cava, A.; Shi, F.D. Genetic deficiency of β2-containing nicotinic receptors attenuates brain injury in ischemic stroke. Neuroscience, 2014, 256, 170-177. doi: 10.1016/j.neuroscience.2013.10.049 PMID: 24184117
- Kamens, H.M.; Miyamoto, J.; Powers, M.S.; Ro, K.; Soto, M.; Cox, R.; Stitzel, J.A.; Ehringer, M.A. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology, 2015, 99, 639-649. doi: 10.1016/j.neuropharm.2015.08.035 PMID: 26318101
- Jackson, A.B.; Toma, W.; Contreras, K.M.; Alkhlaif, Y.; Damaj, M.I. The β3 subunit of the nicotinic acetylcholine receptor is required for nicotine withdrawal-induced affective but not physical signs or nicotine reward in mice. Pharmacol. Biochem. Behav., 2019, 183, 1-5. doi: 10.1016/j.pbb.2019.05.003 PMID: 31145916
- Semenova, S.; Contet, C.; Roberts, A.J.; Markou, A. Mice lacking the β4 subunit of the nicotinic acetylcholine receptor show memory deficits, altered anxiety- and depression-like behavior, and diminished nicotine-induced analgesia. Nicotine Tob. Res., 2012, 14(11), 1346-1355. doi: 10.1093/ntr/nts107 PMID: 22573727
- Roberts, J.P.; Stokoe, S.A.; Sathler, M.F.; Nichols, R.A.; Kim, S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloidinduced synaptic dysfunction. J. Biol. Chem., 2021, 296, 100402. doi: 10.1016/j.jbc.2021.100402 PMID: 33571523
- Jenny, L. Advances in the in vitro and in vivo pharmacology of alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology., 2020, 168, 108008.
- Gallagher, R.; Qudah, T.; Balle, T.; Chebib, M.; McLeod, M.D. Novel methyllycaconitine analogues selective for the α4β2 over α7 nicotinic acetylcholine receptors. Bioorg. Med. Chem., 2021, 51, 116516. doi: 10.1016/j.bmc.2021.116516 PMID: 34798380
- Hernández-Sámano, A.C.; Falcón, A.; Zamudio, F.; Arellano, O.M.A.; Vera, L.E.; Aguilar, M.B. A turripeptide from Polystira nobilis venom inhibits human α3β2 and α7 nicotinic acetylcholine receptors. Insect Biochem. Mol. Biol., 2020, 124, 103416. doi: 10.1016/j.ibmb.2020.103416 PMID: 32592834
- Angelantonio, D.S.; De Stefano, M.E.; Piccioni, A.; Lombardi, L.; Gotti, C.; Paggi, P. Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiol. Dis., 2011, 41(2), 528-537. doi: 10.1016/j.nbd.2010.10.024 PMID: 21056666
- Chang, Y.; Banerjee, J.; Dowell, C.; Wu, J.; Gyanda, R.; Houghten, R.A.; Toll, L.; Mcintosh, J.M.; Armishaw, C.J. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library. J Med Chem., 2014, 57(8), 3511-3521.
- Perniss, A.; Latz, A.; Boseva, I.; Papadakis, T.; Dames, C.; Meisel, C.; Meisel, A.; Scholze, P.; Kummer, W.; Christ, K.G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int. Immunopharmacol., 2020, 84, 106496. doi: 10.1016/j.intimp.2020.106496 PMID: 32304995
- Wu, J.; Liu, Q.; Tang, P.; Jens, D. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci, 2016, 37(7), 562-574.
- Williams, G.; Murray, T.A. Louisiana Tech University; R. Grace Williams, 1542.
- Tarasenko, O.; Voytenko, S.; Koval, L.; Lykhmus, O.; Kalashnyk, O.; Skok, M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int. Immunopharmacol., 2020, 82, 106373. doi: 10.1016/j.intimp.2020.106373 PMID: 32163855
- Havekes, R.; Abel, T.; Van der Zee, E.A. The cholinergic system and neostriatal memory functions. Behav. Brain Res., 2011, 221(2), 412-423. doi: 10.1016/j.bbr.2010.11.047 PMID: 21129408
- Campbell, B.A. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science., 1979, 205, 929-932.
- Wilkerson, A.; Levin, E.D. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience., 1999, 89(3), 743-749. doi: 10.1016/S0306-4522(98)00346-7
- Neill, M.O.; Brown, V.J. The Effect of Striatal Dopamine Depletion and the Adenosine A 2A Antagonist KW-6002 on Reversal Learning in Rats. Neurobiol Learn Mem, 2007, 88(3), 75-81. doi: 10.1016/j.nlm.2007.03.003
- Korpi, E.R.; Gründer, G.; Lüddens, H. Drug interactions at GABA(A) receptors. Prog Neurobiol, 2002, 67(2), 113-159.
- Govindpani, K.; Guzm, B.C.; Vinnakota, C.; Waldvogel, H.J.; Id, R.L.F.; Kwakowsky, A. Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci, 2017, 18(8), 1813. doi: 10.3390/ijms18081813
- Nakhate, K. Cognitive informatics, computer modeling, and cognitive science application to neural. Acad. Press, 2020, 2, 21-47. doi: 10.1016/B978-0-12-819445-4.00002-3
- Van Erum, J.; Van Dam, D.; Deyn, P.P. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci. Biobehav. Rev., 2019, 105, 72-80. doi: 10.1016/j.neubiorev.2019.07.019 PMID: 31377219
- Charnay, Y. Pharmacological aspects. Dialogues Clin Neurosci, 2010, 12(4), 471-487.
- Terry, A.V., Jr; Buccafusco, J.J.; Wilson, C. Cognitive dysfunction in neuropsychiatric disorders: Selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res., 2008, 195(1), 30-38. doi: 10.1016/j.bbr.2007.12.006 PMID: 18241938
- Rodrı, J. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol, 2012, 99(1), 15-41. doi: 10.1016/j.pneurobio.2012.06.010
- Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function. HHS Public Access., 2018, 142, 111-121. doi: 10.1111/jnc.14052.Cholinergic
- Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell, 2019, 18(6), e13037. doi: 10.1111/acel.13037
- Wang, K.; Chen, Q.; Wu, N.; Li, Y.; Zhang, R.; Wang, J.; Gong, D.; Zou, X.; Liu, C.; Chen, J. Berberine ameliorates spatial learning memory impairment and modulates cholinergic anti-inflammatory pathway in diabetic rats. Front. Pharmacol., 2019, 10, 1003. doi: 10.3389/fphar.2019.01003 PMID: 31551793
- Ma, S.; Leonard, C.S.; Wisden, W. Andrew dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci. Biobehav. Rev., 2018, 85, 21-33. doi: 10.1016/j.neubiorev.2017.07.009
- Callahan, P.M.; Terry, A.V., Jr; Peitsch, M.C.; Hoeng, J.; Koshibu, K. Differential effects of alkaloids on memory in rodents. Sci. Rep., 2021, 11(1), 9843. doi: 10.1038/s41598-021-89245-w PMID: 33972592
- Inayat, S.; Nazariahangarkolaee, M.; Singh, S.; Mcnaughton, B.L.; Whishaw, I.Q.; Mohajerani, M.H. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 2020, 43(6), zsz297. doi: 10.1093/sleep/zsz297
- Mineur, Y.S.; Picciotto, M.R. The role of acetylcholine in negative encoding bias: Too much of a good thing? Eur. J. Neurosci., 2021, 53, 114-125. doi: 10.1111/ejn.14641.The
- Solari, N.; Hangya, B. Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci., 2018, 48(5), 2199-2230. doi: 10.1111/ejn.14089
Supplementary files
