Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease


Cite item

Full Text

Abstract

Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer’s disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.

About the authors

Kushagra Nagori

Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Madhulika Pradhan

Department of Pharmaceutical Technology, Gracious College of Pharmacy

Email: info@benthamscience.net

Mukesh Sharma

Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Ajazuddin

Department of Pharmaceutics, College of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Hemant Badwaik

Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research

Email: info@benthamscience.net

Kartik Nakhate

Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res., 2011, 221(2), 488-498. doi: 10.1016/j.bbr.2009.12.046 PMID: 20060422
  2. Robinson, L.; Platt, B.; Riedel, G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res., 2011, 221(2), 443-465. doi: 10.1016/j.bbr.2011.01.055 PMID: 21315109
  3. Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115. doi: 10.2174/1570159X13666150716165726 PMID: 26813123
  4. Iarkov, A.; Mendoza, C.; Echeverria, V. Cholinergic receptor modulation as a target for preventing dementia in parkinson’s disease. Front. Neurosci., 2021, 15, 665820. doi: 10.3389/fnins.2021.665820 PMID: 34616271
  5. Fibiger, H.C. Cholinergic mechanisms in learning, memory and dementia: A review of recent evidence. Trends Neurosci., 1991, 14(6), 220-223. doi: 10.1016/0166-2236(91)90117-D PMID: 1716012
  6. Jahed, F.J.; Rahbarghazi, R.; Shafaei, H.; Rezabakhsh, A.; Karimipour, M. Application of neurotrophic factor-secreting cells (astrocyte - Like cells) in the in-vitro Alzheimer’s disease-like pathology on the human neuroblastoma cells. Brain Res. Bull., 2021, 172, 180-189. doi: 10.1016/j.brainresbull.2021.04.014 PMID: 33895268
  7. Dunnett, S.B.; Fibiger, H.C. Role of forebrain cholinergic systems in learning and memory: Relevance to the cognitive deficits of aging and Alzheimer’s dementia. Prog. Brain Res., 1993, 98, 413-420. doi: 10.1016/S0079-6123(08)62425-5 PMID: 8248529
  8. Han, C. Corrigendum to "New mechanism of neuroinflflammation in Alzheimer’s disease: The activation of NLRP3 inflflammasome mediated by gut microbiota" Progress in Neuropsychopharmacology & Biological Psychiatry 100 (2020) 109884. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 114, 110482. doi: 10.1016/j.pnpbp.2021.110482 PMID: 34838637
  9. Sohn, E.; Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Kim, J.H.; Jeong, S.J. Elaeagnus glabra f. oxyphylla attenuates scopolamine-induced learning and memory impairments in mice by improving cholinergic transmission via activation of CREB/NGF signaling. Nutrients, 2019, 11(6), 1205. doi: 10.3390/nu11061205 PMID: 31141948
  10. Nagori, K.; Nakhate, K.T.; Yadav, K.; Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for alzheimer’s disease: Preclinical to clinical trial insights. Fut. Pharmacol., 2023, 3(4), 877-907. doi: 10.3390/futurepharmacol3040053
  11. Ko, Y.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 6,7,4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol., 2018, 826, 140-147. doi: 10.1016/j.ejphar.2018.02.048 PMID: 29510125
  12. Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399. doi: 10.1007/s12272-013-0036-3 PMID: 23435942
  13. (a) Hampel, H.; Mesulam, M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 2018, 141(7), 1917-1933. (b) Thakur, A.; Nagori, K.; Rao, A.; Rai, N. Use of Deep Learning Approaches for the Prediction of Diseases from Medical Images. In Medical Imaging Informatics: Machine learning, deep learning and big data analytics; 2024; pp. 115138. doi: 10.1093/brain/awy132
  14. Perry, E.K.; Tomlinson, B.E.; Blessed, G.; Bergmann, K.; Gibson, P.H.; Perry, R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ, 1978, 2(6150), 1457-1459. doi: 10.1136/bmj.2.6150.1457 PMID: 719462
  15. Chen, Q.; Wu, J.; Dong, X.; Yin, H.; Shi, X.; Su, S.; Che, B.; Li, Y.; Yang, J. Gut flora-targeted photobiomodulation therapy improves senile dementia in an Aß-induced Alzheimer’s disease animal model. J. Photochem. Photobiol. B, 2021, 216, 112152. doi: 10.1016/j.jphotobiol.2021.112152 PMID: 33610085
  16. Gomez-Amaya, S.M.; Barbe, M.F.; Lamarre, N.S.; Brown, J.M.; Braverman, A.S.; Ruggieri, M.R., Sr Neuromuscular nicotinic receptors mediate bladder contractions following bladder reinnervation with somatic to autonomic nerve transfer after decentralization by spinal root transection. J. Urol., 2015, 193(6), 2138-2145. doi: 10.1016/j.juro.2014.10.046 PMID: 25444958
  17. Jonsson, M.; Gurley, D.; Dabrowski, M.; Larsson, O.; Johnson, E.C.; Eriksson, L.I. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: A possible explanation for the train-of-four fade. Anesthesiology, 2006, 105(3), 521-533. doi: 10.1097/00000542-200609000-00016 PMID: 16931985
  18. Paterson, D.; Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol., 2000, 61(1), 75-111. doi: 10.1016/S0301-0082(99)00045-3 PMID: 10759066
  19. Kleeman, E.; Nakauchi, S.; Su, H.; Dang, R.; Wood, M.A.; Sumikawa, K. Impaired function of α2-containing nicotinic acetylcholine receptors on oriens-lacunosum moleculare cells causes hippocampus-dependent memory impairments. Neurobiol. Learn. Mem., 2016, 136, 13-20. doi: 10.1016/j.nlm.2016.09.010 PMID: 27660076
  20. Charpantier, E.; Besnard, F.; Graham, D.; Sgard, F. Diminution of nicotinic receptor alpha 3 subunit mRNA expression in aged rat brain. Brain Res. Dev. Brain Res., 1999, 118(1-2), 153-158. doi: 10.1016/S0165-3806(99)00157-1 PMID: 10611514
  21. Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J. Interactions of atropine with heterologously expressed and native alpha 3 subunit-containing nicotinic acetylcholine receptors. Br J Pharmacol, 2003, 138(5), 801-810. doi: 10.1038/sj.bjp.0705124
  22. Poth, K.; Nutter, T.J.; Cuevas, J.; Parker, M.J.; Adams, D.J.; Luetje, C.W. Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurons from rat intracardiac ganglia. J Neurosci, 1997, 17(2), 586-596. doi: 10.1523/JNEUROSCI.17-02-00586.1997
  23. Dallanoce, C.; Matera, C.; Amici, M.D.E.; Rizzi, L.; Pucci, L.; Gotti, C.; Clementi, F.; Micheli, C.D.E.; Farmaceutiche, S.; Pratesi, P. The enantiomers of epiboxidine and of two related analogs: Synthesis and estimation of their binding affinity at α4β2 and α7 neuronal nicotinic acetylcholine receptors. Chirality, 2012, 24(7), 543-551.
  24. Gao, Y.; Kuwabara, H.; Spivak, C.E.; Xiao, Y.; Kellar, K.; Ravert, H.T.; Kumar, A.; Alexander, M.; Hilton, J.; Wong, D.F.; Dannals, R.F.; Horti, A.G. Discovery of (-)-7-methyl-2-exo-3′-(6-18Ffluoropyridin-2-yl)-5′-pyridinyl-7-azabicyclo2.2.1heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (alpha4β2-nAChR) with optimal positron emission tomography imaging properties. J. Med. Chem., 2008, 51(15), 4751-4764. doi: 10.1021/jm800323d PMID: 18605717
  25. Vincler, M.; Mcintosh, J.M. Targeting the alpha9alpha10 nicotinic acetylcholine receptor to treat severe pain. Expert. Opin. Ther. Targets, 2007, 11(7), 891-877.
  26. Bagdas, D.; AlSharari, S.D.; Freitas, K.; Tracy, M.; Damaj, M.I. The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem. Pharmacol., 2015, 97(4), 590-600. doi: 10.1016/j.bcp.2015.04.013 PMID: 25931144
  27. Bloem, B.; Poorthuis, R.B.; Mansvelder, H.D. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front. Neural Circuits, 2014, 8, 17. doi: 10.3389/fncir.2014.00017 PMID: 24653678
  28. Brown, R.W.B.; Collins, A.C.; Lindstrom, J.M.; Whiteaker, P. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem, 2007, 103(1), 204-215. doi: 10.1111/j.1471-4159.2007.04700.x
  29. Collingridge, G.L.; Olsen, R.W.; Peters, J.; Spedding, M.; Neuropharmacology, A. A nomenclature for ligand-gated ion channels. Neuropharmacology, 2009, 56(1), 2-5. doi: 10.1016/j.neuropharm.2008.06.063 PMID: 18655795
  30. Quik, M.; Perez, X.A.; Grady, S.R. Role of a 6 nicotinic receptors in CNS dopaminergic function. Relevan. Addict. Neurolog. Disord., 2011, 82, 873-882. doi: 10.1016/j.bcp.2011.06.001 PMID: 21684266
  31. Tietje, K.R.; Anderson, D.J.; Bitner, R.S.; Blomme, E.A.; Brackemeyer, P.J.; Briggs, C.A.; Browman, K.E.; Bury, D.; Curzon, P.; Drescher, K.U. Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther, 2008, 14(1), 65-82. doi: 10.1111/j.1527-3458.2008.00037.x
  32. Lykhmus, O.; Voytenko, L.P.; Lips, K.S.; Bergen, I. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front Cell Neurosci, 2017, 11, 282. doi: 10.3389/fncel.2017.00282
  33. Vincler, M.; Mcintosh, J.M.; Absalom, N.; Chebib, M.; Bele, A. Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochem Pharmacol, 2009, 78(7), 693-702. doi: 10.1016/j.bcp.2009.05.020
  34. Kellar, J.; Yasuda, R.P.; Parker, J.C.; Sarkar, D.; Quick, M.W.; Lester, R.A.J.; Perez, D.M.; Barabino, B.; Vailati, S.; Moretti, M. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity A4β2, and increases A5α4β2, nicotinic receptor surface expression. PLoS One, 2008, 11, 519-528. doi: 10.1523/JNEUROSCI.3666-07.2008
  35. Freed, A.S.; Schwarz, A.C.; Brei, B.K.; Candadai, C.S.V.; Thies, J.; Mah, J.K.; Chabra, S.; Wang, L.; Innes, A.M.; Bennett, J.T. CHRNB1-associated congenital myasthenia syndrome: Expanding the clinical spectrum. Am. J. Med. Genet. A., 2021, 185(3), 827-835. doi: 10.1002/ajmg.a.62011 PMID: 33296147
  36. Levin, E.D. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem. Pharmacol., 2013, 86(8), 1145-1152. doi: 10.1016/j.bcp.2013.07.021 PMID: 23928190
  37. Nichols, W.A.; Henderson, B.J.; Marotta, C.B.; Yu, C.Y.; Richards, C.; Dougherty, D.A.; Lester, H.A.; Cohen, B.N. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLoS One, 2016, 11(6), e0158032. doi: 10.1371/journal.pone.0158032 PMID: 27336596
  38. Samochocki, M.; Zerlin, M.; Jostock, R.; Pj, G.K. Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand Suppl, 2000, 176, 68-73.
  39. Gharpure, A.; Teng, J.; Zhuang, Y.; Noviello, C.M.; Walsh, R.M., Jr; Cabuco, R.; Howard, R.J.; Zaveri, N.T.; Lindahl, E.; Hibbs, R.E. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron, 2019, 104(3), 501-511.e6. doi: 10.1016/j.neuron.2019.07.030 PMID: 31488329
  40. Skok, V.I. Nicotinic acetylcholine receptors in autonomic Ganglia. Auton Neurosci, 2002, 97, 1-11.
  41. Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.H.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs, 2000, 32(S1), 1-112, 1-112. doi: 10.1080/02791072.2000.10736099 PMID: 11280926
  42. Lee, S.H.; Barrie, E.S.; Sadee, W.; Smith, R.M. Nicotine Dependence and the CHRNA5/CHRNA3/CHRNB4 Nicotinic Receptor Regulome; Elsevier Inc., 2019. doi: 10.1016/B978-0-12-813035-3.00043-5
  43. Spindle, M.S.; Parsa, P.V.; Bowles, S.G.; D’Souza, R.D.; Vijayaraghavan, S. A dominant role for the beta 4 nicotinic receptor subunit in nicotinic modulation of glomerular microcircuits in the mouse olfactory bulb. J. Neurophysiol., 2018, 120(4), 2036-2048. doi: 10.1152/jn.00925.2017 PMID: 30089021
  44. Grailhe, R.; De Carvalho, L.P.; Paas, Y.; Le Poupon, C.; Soudant, M.; Bregestovski, P.; Changeux, J.P.; Corringer, P.J. Distinct subcellular targeting of fluorescent nicotinic α3β4 and serotoninergic 5-HT3A receptors in hippocampal neurons. Eur. J. Neurosci., 2004, 19(4), 855-862. doi: 10.1111/j.1460-9568.2004.03153.x PMID: 15009132
  45. Yang, K.; Jin, G.; Wu, J. Mysterious A6-containing NAChRs. Funct. Pharmacolog. Pathophysiol.., 2009, 30, 740-751. doi: 10.1038/aps.2009.63 PMID: 19498417
  46. Deligia, F.; Murineddu, G.; Gotti, C.; Ragusa, G.; Fasoli, F.; Sciaccaluga, M.; Plutino, S.; Fucile, S.; Loriga, G.; Asproni, B.; Pinna, G.A. Pyridinyl- and pyridazinyl-3,6-diazabicyclo3.1.1heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors. Eur. J. Med. Chem., 2018, 152, 401-416. doi: 10.1016/j.ejmech.2018.04.026 PMID: 29751234
  47. Barabino, B.; Vailati, S.; Moretti, M.; Mcintosh, J.M.; Longhi, R.; Clementi, F.; Gotti, C. An alpha4beta4 nicotinic receptor subtype is present in chick retina: identification, characterization and pharmacological comparison with the transfected alpha4beta4 and alpha6beta4 subtypes. Mol Pharmacol, 2001, 59(6), 1410-1417.
  48. Evans, N.M.; Bose, S.; Benedetti, G.; Zwart, R.; Pearson, K.H.; Mcphie, G.I.; Craig, P.J.; Benton, J.P.; Volsen, S.G.; Sher, E. Expression and functional characterisation of a human chimeric nicotinic receptor with alpha6beta4 properties. Eur J Pharmacol, 2003, 466(1-2), 31-39. doi: 10.1016/S0014-2999(03)01540-1
  49. Yang, K.; Jin, G.; Wu, J. Mysterious α6-containing nAChRs: Function, pharmacology, and pathophysiology. Acta Pharmacol. Sin., 2009, 30(6), 740-751. doi: 10.1038/aps.2009.63 PMID: 19498417
  50. Gotti, C.; Clementi, F.; Fornari, A.; Gaimarri, A.; Guiducci, S.; Manfredi, I.; Moretti, M.; Pedrazzi, P.; Pucci, L.; Zoli, M. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol., 2009, 78(7), 703-711. doi: 10.1016/j.bcp.2009.05.024 PMID: 19481063
  51. Moretti, M.; Zoli, M.; George, A.A.; Lukas, R.J.; Pistillo, F.; Maskos, U.; Whiteaker, P.; Gotti, C. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: Biochemical and pharmacological characterization. Mol. Pharmacol., 2014, 86(3), 306-317. doi: 10.1124/mol.114.093377 PMID: 25002271
  52. Thomsen, M.S.; Zwart, R.; Ursu, D.; Jensen, M.M.; Pinborg, L.H.; Gilmour, G.; Wu, J.; Sher, E.; Mikkelsen, J.D. α7 and β2 nicotinic acetylcholine receptor subunits form heteromeric receptor complexes that are expressed in the human cortex and display distinct pharmacological properties. PLoS One, 2015, 10(6), e0130572. doi: 10.1371/journal.pone.0130572 PMID: 26086615
  53. Shao, X.M.; Tan, W.; Xiu, J.; Puskar, N.; Fonck, C.; Lester, H.A.; Feldman, J.L. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J. Neurosci., 2008, 28(2), 519-528. doi: 10.1523/JNEUROSCI.3666-07.2008 PMID: 18184794
  54. Mesulam, M.M.; Mufson, E.J.; Levey, A.I.; Wainer, B.H. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol., 1983, 214(2), 170-197. doi: 10.1002/cne.902140206 PMID: 6841683
  55. Woolf, N. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol., 1991, 37(6), 475-524. doi: 10.1016/0301-0082(91)90006-M PMID: 1763188
  56. Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 2016, 91(6), 1199-1218. doi: 10.1016/j.neuron.2016.09.006 PMID: 27657448
  57. Maurer, S.V.; Williams, C.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front. Immunol., 2017, 8, 1489. doi: 10.3389/fimmu.2017.01489 PMID: 29167670
  58. Yi, F.; Catudio-Garrett, E.; Gábriel, R.; Wilhelm, M.; Erdelyi, F.; Szabo, G.; Deisseroth, K.; Lawrence, J. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front. Synaptic Neurosci., 2015, 7, 4. doi: 10.3389/fnsyn.2015.00004 PMID: 25798106
  59. Blusztajn, J.K.; Rinnofner, J. Intrinsic cholinergic neurons in the hippocampus: Fact or artifact? Front. Synaptic Neurosci., 2016, 8, 6-11. doi: 10.3389/fnsyn.2016.00006 PMID: 27014052
  60. Dautan, D.; Bay, H.H.; Bolam, J.P.; Gerdjikov, T.V.; Segovia, M.J. Extrinsic sources of cholinergic innervation of the striatal complex: A whole-brain mapping analysis. Front. Neuroanat., 2016, 10, 1-10. doi: 10.3389/fnana.2016.00001 PMID: 26834571
  61. Erskine, D.; Taylor, J.P.; Bakker, G.; Brown, A.J.H.; Tasker, T.; Nathan, P.J. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural, and psychological symptoms in psychiatric and neurological disorders. Drug Discov. Today, 2019, 24(12), 2307-2314. doi: 10.1016/j.drudis.2019.08.009 PMID: 31499186
  62. Agostinelli, L.J.; Geerling, J.C.; Scammell, T.E. Basal forebrain subcortical projections. Brain Struct. Funct., 2019, 224(3), 1097-1117. doi: 10.1007/s00429-018-01820-6 PMID: 30612231
  63. Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28. doi: 10.1016/j.brainresbull.2013.12.004 PMID: 24333192
  64. Zaborszky, L.; Duque, A.; Gielow, M.; Gombkoto, P.; Nadasdy, Z.; Somogyi, J. Organization of the basal forebrain cholinergic projection system: Specific or diffuse? The Rat Nervous System, 2015, , 491-507. doi: 10.1016/B978-0-12-374245-2.00019-X
  65. Simon, P.A.; Jazat, P.F.; Dutar, P.; Epelbaum, J.; Bassant, M.H. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats. J. Neurosci., 2006, 26(35), 9038-9046. doi: 10.1523/JNEUROSCI.1401-06.2006 PMID: 16943562
  66. Ahmed, N.Y.; Knowles, R.; Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci., 2019, 12, 204. doi: 10.3389/fnmol.2019.00204 PMID: 31551706
  67. Gourgues, H.F.; Jegouic, K.; Vaucher, E. Topographic organization of cholinergic innervation from the basal forebrain to the visual cortex in the rat. Front. Neural Circuits, 2018, 12, 19. doi: 10.3389/fncir.2018.00019 PMID: 29662442
  68. Kondo, H.; Zaborszky, L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol., 2016, 524(12), 2503-2515. doi: 10.1002/cne.23967 PMID: 26780730
  69. Cantero, J.L.; Atienza, M.; Lage, C.; Zaborszky, L.; Vilaplana, E.; Garcia, L.S.; Pozueta, A.; Rodriguez, R.E.; Blesa, R.; Alcolea, D.; Lleo, A.; Juan, S.P.; Fortea, J. Atrophy of basal forebrain initiates with tau pathology in individuals at risk for alzheimer’s disease. Cereb. Cortex, 2020, 30(4), 2083-2098. doi: 10.1093/cercor/bhz224 PMID: 31799623
  70. Ohno, M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res. Bull., 2016, 126(Pt 2), 183-198. doi: 10.1016/j.brainresbull.2016.04.007 PMID: 27093940
  71. Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933. doi: 10.1093/brain/awy132 PMID: 29850777
  72. Tiwari, P.; Dwivedi, S.; Singh, M.P.; Mishra, R.; Chandy, A. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2013, 3(5), 413-420. doi: 10.1016/S2222-1808(13)60094-8
  73. Van der Zee, E.A.; Luiten, P.G.M. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: A review of immunocytochemical localization in relation to learning and memory. Prog. Neurobiol., 1999, 58(5), 409-471. doi: 10.1016/S0301-0082(98)00092-6 PMID: 10380240
  74. Ishii, M.; Kurachi, Y. Muscarinic acetylcholine receptors. Curr. Pharm. Des., 2006, 12(28), 3573-3581. doi: 10.2174/138161206778522056
  75. Graef, S.; Schönknecht, P.; Sabri, O.; Hegerl, U. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology, 2011, 215(2), 205-229. doi: 10.1007/s00213-010-2153-8 PMID: 21212938
  76. Smail, M.A.; Soles, J.L.; Karwoski, T.E.; Rubin, R.T.; Rhodes, M.E. Sexually diergic hypothalamic-pituitary-adrenal axis responses to selective and non-selective muscarinic antagonists prior to cholinergic stimulation by physostigmine in rats. Brain Res. Bull., 2018, 137, 23-34. doi: 10.1016/j.brainresbull.2017.11.002 PMID: 29122691
  77. Bock, A.; Schrage, R.; Mohr, K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology, 2018, 136(Pt C), 427-437. doi: 10.1016/j.neuropharm.2017.09.024 PMID: 28935216
  78. Zenko, D.; Hislop, J.N.S.C. Regulation and trafficking of muscarinic acetylcholine receptors. Neuropharmacology, 2017, 136(Pt C), 374-382. doi: 10.1016/j.neuropharm.2017.11.017 PMID: 29138081
  79. Drever, B.D.; Riedel, G.; Platt, B. The cholinergic system and hippocampal plasticity. Behav. Brain Res., 2011, 221(2), 505-514. doi: 10.1016/j.bbr.2010.11.037 PMID: 21130117
  80. Thal, D.M.; Sun, B.; Feng, D.; Nawaratne, V.; Leach, K.; Felder, C.C.; Bures, M.G.; Evans, D.A.; Weis, W.I.; Bachhawat, P.; Kobilka, T.S.; Sexton, P.M.; Kobilka, B.K.; Christopoulos, A. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531(7594), 335-340. doi: 10.1038/nature17188 PMID: 26958838
  81. Marsango, S.; Ward, R.J.; Curto, A.E.; Milligan, G.S.C. Muscarinic receptor oligomerization. Neuropharmacology, 2017, 136(Pt C), 401-410. doi: 10.1016/j.neuropharm.2017.11.023 PMID: 29146505
  82. van der Westhuizen, E.T.; Choy, K.H.C.; Valant, C.; Nickson, M.S.; Bradley, S.J.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front. Pharmacol., 2021, 11, 606656. doi: 10.3389/fphar.2020.606656 PMID: 33584282
  83. Schledwitz, A.; Sundel, M.H.; Alizadeh, M.; Hu, S.; Xie, G.; Raufman, J. Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int. J. Mol. Sci., 2021, 22(23), 13153.
  84. Saternos, H.C.; Almarghalani, D.A.; Gibson, H.M.; Meqdad, M.A.; Antypas, R.B.; Lingireddy, A.; Aboualaiwi, W.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomi., 2022, 50(1), 1-9. doi: 10.1152/physiolgenomics.00062.2017
  85. Naganawa, M.; Nabulsi, N.; Henry, S.; Matuskey, D.; Lin, S.; Navarro, A.; Gao, H.; Ropchan, J.; Labaree, D.; Carson, R.E. First-in-human assessment of 11C-LSN3172176, an M1 muscarinic acetylcholine receptor PET radiotracer. J. Nucl. Med., 2020, 62(4), 553-560. doi: 10.2967/jnumed.120.246967
  86. Moran, S.P.; Maksymetz, J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends Pharmacol. Sci., 2020, 40, 1006-1020. doi: 10.1016/j.tips.2019.10.007.Targeting
  87. Scarpa, M.; Hesse, S.; Bradley, S.J. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease- modifying effects in Alzheimer’s disease? Adv. Pharmacol., 2020, 88, 277-310. doi: 10.1016/bs.apha.2019.12.003 PMID: 32416870
  88. Uslaner, J.M.; Kuduk, S.D.; Wittmann, M.; Lange, H.S.; Fox, S.V.; Min, C.; Pajkovic, N.; Harris, D.; Cilissen, C.; Mahon, C.; Mostoller, K.; Warrington, S.; Beshore, D.C. Preclinical to human translational pharmacology of the novel M 1 positive allosteric modulator MK-7622. J. Pharmacol. Exp. Ther., 2018, 365(3), 556-566. doi: 10.1124/jpet.117.245894 PMID: 29563325
  89. Sales, M.E.; Español, A.J.; Salem, A.R.; Pulido, P.M.; Sanchez, Y.; Sanchez, F. Role of muscarinic acetylcholine receptors in breast cancer: Design of metronomic chemotherapy. Curr Clin Pharmacol., 2019, 14(2), 91-100. doi: 10.2174/1574884714666181203095437
  90. Ruan, Y.; Patzak, A.; Pfeiffer, N.; Gericke, A. Muscarinic acetylcholine receptors in the retina—therapeutic implications. Int J Mol Sci., 2021, 22(9), 4989.
  91. Xu, J.; Hu, Y.; Kaindl, J.; Gmeiner, P.; Jin, C.; Kobilka, B.K.; Maeda, S.; Niu, X.; Li, H. Conformational complexity and dynamics in a muscarinic receptor revealed by NMR spectroscopy. Mol. Cell, 2019, 75(1), 53-65.e7. doi: 10.1016/j.molcel.2019.04.028
  92. Romberg, C. Impaired object-location learning and recognition memory but enhanced sustained attention in M2 muscarinic receptor-deficient mice. Psychopharmacology., 2018, 235(12), 3495-3508. doi: 10.1007/s00213-018-5065-7
  93. Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560. doi: 10.1038/nrd4295 PMID: 24903776
  94. Wang, L.; Xu, J.; Xia, Y.; Yin, K.; Li, Z.; Li, B.; Wang, W.; Xu, H.; Yang, L. Muscarinic acetylcholine receptor 3 mediates vagus nerve-induced gastric cancer. Oncogenesis, 2018, 7(11), 88. doi: 10.1038/s41389-018-0099-6
  95. Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Wess, J.; Kobilka, B.K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482(7386), 552-556. doi: 10.1038/nature10867 PMID: 22358844
  96. Suriyo, T.; Chotirat, S.; Auewarakul, C.U. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol Lett., 2019, 17(1), 1357-1362. doi: 10.3892/ol.2018.9663
  97. Costa, A.; Haage, V.; Yang, S.; Wegner, S.; Ugursu, B.; Rex, A.; Kronenberg, G.; Gertz, K.; Wolf, S.A.; Kettenmann, H. Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain Behav. Immun., 2020, 91, 89-104. doi: 10.1016/j.bbi.2020.09.008 PMID: 32927021
  98. Hering, N.A.; Liu, V.; Kim, R.; Weixler, B.; Droeser, R.A.; Arndt, M.; Pozios, I.; Beyer, K.; Kreis, M.E.; Seeliger, H. Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers, 2021, 13(13), 3220.
  99. Nicklas, P.R.; Kiefer, M.L.; Whalen, M.A.; Stewart, M.T.; Mosura, D.E.; Bennett, E.M.; Hawley, W.R.; McLaughlin, P.J. Muscarinic M1, but not M4, receptor antagonism impairs divided attention in male rats. Pharmacol. Biochem. Behav., 2021, 205, 173184. doi: 10.1016/j.pbb.2021.173184 PMID: 33836220
  100. Wang, J.; Wu, M.; Wu, L.; Xu, Y.; Li, F.; Wu, Y.; Popov, P.; Wang, L.; Bai, F.; Zhao, S. The structural study of mutation-induced inactivation of human muscarinic receptor M4. IUCrJ, 2020, 7(Pt 2), 294-305. doi: 10.1107/S2052252520000597
  101. Paderina, D.Z.; Fedorenko, O.Y.; Tenin, G.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. Association of cholinergic muscarinic M4 receptor gene polymorphism with schizophrenia. Appl. Clin. Genet., 2020, 13, 97-105.
  102. Takai, K.; Enomoto, T. Discovery and development of muscarinic acetylcholine m4 activators as promising therapeutic agents for CNS diseases. Chem. Pharm. Bull., 2018, 66(1), 37-44.
  103. Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci., 2019, 116(51), 26001-26007. doi: 10.1073/pnas.1914446116
  104. Scherbaum, I.; Heidecke, H.; Bunte, K.; Peters, U.; Beikler, T. Autoantibodies against m 5 -muscarinic and beta 1 -adrenergic receptors in periodontitis patients. 2020, 12, 16609-16620.
  105. Wen, J. Interactions of the Α3β2 nicotinic acetylcholine receptor interfaces with α-conotoxin LsIA and its carboxylated C-terminus analogue: Molecular dynamics simulations. Mar. Drugs., 2020, 18(7), 349.
  106. Valentine, G.; Sofuoglu, M. Cognitive effects of nicotine: Recent progress. Curr Neuropharmacol, 2018, 16(4), 403-414. doi: 10.2174/1570159X15666171103152136
  107. Xu, M.; Zhu, X.; Yu, J.; Yu, J.; Luo, S.; Wang, X. The crystal structure of Ac-AChBP in complex with α-conotoxin Lvia reveals the mechanism of its selectivity towards different nAChR subtypes. Protein Cell, 2017, 8(9), 675-685. doi: 10.1007/s13238-017-0426-2 PMID: 28585176
  108. Alvin, V. Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tob Res., 2019, 21(3), 383-394.
  109. Gharpure, A.; Noviello, C.M.; Hibbs, R.E. Progress in nicotinic receptor structural biology. Neuropharmacology, 2020, 171, 108086. doi: 10.1016/j.neuropharm.2020.108086 PMID: 32272141
  110. Kouvatsos, N.; Giastas, P.; Chroni-Tzartou, D.; Poulopoulou, C.; Tzartos, S.J. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Proc. Natl. Acad. Sci., 2016, 113(34), 9635-9640. doi: 10.1073/pnas.1602619113 PMID: 27493220
  111. Ba, S.M.G.; Metherate, R. Enhanced sensory–cognitive processing by activation of nicotinic acetylcholine receptors. Nicotine Tob Res., 2019, 21(3), 377-382. doi: 10.1093/ntr/nty134
  112. Ween, H.; Thorin-Hagene, K.; Andersen, E.; Grønlien, J.H.; Lee, C.H.; Gopalakrishnan, M.; Malysz, J. α3 and α7 nAChR-mediated Ca2+ transient generation in IMR-32 neuroblastoma cells. Neurochem. Int., 2010, 57(3), 269-277. doi: 10.1016/j.neuint.2010.06.005 PMID: 20558224
  113. Hurst, R.; Rollema, H.; Bertrand, D. Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol. Ther., 2013, 137(1), 22-54. doi: 10.1016/j.pharmthera.2012.08.012 PMID: 22925690
  114. Wu, T.; Wang, Y.; Shi, W.; Zhang, B.Q.; Raelson, J.; Yao, Y.M.; Wu, H.D.; Xu, Z.X.; Blanchet, M.F.C.; Ledoux, J.; Blunck, R.; Sheng, J.Z.; Hu, S.J.; Luo, H.; Wu, J. A variant in the nicotinic acetylcholine receptor alpha 3 subunit gene is associated with hypertension risks in hypogonadic patients. Front. Genet., 2020, 11, 539862. doi: 10.3389/fgene.2020.539862 PMID: 33329690
  115. Baradaran, R.; Anbarkeh, F.R.; Delavar, A.; Khorasgani, E.M.; Rahimian, N.; Abbasi, Y.; Jaberi, N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J. Chem. Neuroanat., 2021, 116, 101977. doi: 10.1016/j.jchemneu.2021.101977 PMID: 34052301
  116. Yu, W.F.; Nordberg, A.; Ravid, R.; Guan, Z.Z. Correlation of oxidative stress and the loss of the nicotinic receptor alpha4 subunit in the temporal cortex of patients with Alzheimer’s disease. Neurosci. Lett., 2003, 338(1), 13-16. doi: 10.1016/S0304-3940(02)01361-7 PMID: 12565129
  117. Quijano Cardé, N.A.; Shaw, J.; Carter, C.; Kim, S.; Stitzel, J.A.; Venkatesh, S.K.; Ramchandani, V.A.; De Biasi, M. Mutation of the α5 nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology, 2022, 216, 109170. doi: 10.1016/j.neuropharm.2022.109170 PMID: 35752273
  118. Sun, H.; Ma, X. α5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells. Exp. Toxicol. Pathol., 2015, 67(9), 477-482. doi: 10.1016/j.etp.2015.07.001 PMID: 26205096
  119. Zhang, Y.; Jia, Y.; Li, P. Reciprocal activation of A5-NAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J. Genet. Genomics, 2017, 44, 355-362. doi: 10.1016/j.jgg.2017.03.003 PMID: 28750889
  120. Jia, Y.; Zhang, Q.; Liu, Z.; Pan, P.; Jia, Y.; Zhu, P.; Jiao, Y.; Kang, G.; Ma, X. The role of α5-nicotinic acetylcholine receptor/NLRP3 signaling pathway in lung adenocarcinoma cell proliferation and migration. Toxicology, 2022, 469, 153120. doi: 10.1016/j.tox.2022.153120 PMID: 35131329
  121. Gu, S.; Matta, J.A.; Davini, W.B.; Dawe, G.B.; Lord, B.; Bredt, D.S. α6-Containing nicotinic acetylcholine receptor reconstitution involves mechanistically distinct accessory components. Cell Rep., 2019, 26(4), 866-874.e3. doi: 10.1016/j.celrep.2018.12.103 PMID: 30673609
  122. Cardenas, A.; Elabd, M.; Lotfipour, S. Specificity of a rodent alpha(α)6 nicotinic acetylcholine receptor subunit antibody. Psychopharmacology, 2020, 237(1), 283-285. doi: 10.1007/s00213-019-05413-x PMID: 31786649
  123. Gao, F.; Chen, D.; Ma, X.; Sudweeks, S.; Jordan, T.; Gao, M.; Turner, D.; Eaton, J.B.; Michael, J.; Lukas, R.J. Version of Record, 2019. Available from: Https://Www.Sciencedirect.Com/Science/Article/Pii/S002839081830772X
  124. Tofighi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology, 2021, 85, 245-253. doi: 10.1016/j.neuro.2021.06.002 PMID: 34111468
  125. Li, H.; Gao, J.; Chang, Y.; Li, K.; Wang, L.; Ju, C.; Zhang, F. JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF- κB-mediated inflammation. Int. Immunopharmacol., 2021, 96, 107726. doi: 10.1016/j.intimp.2021.107726 PMID: 33975230
  126. Yang, T.; Xiao, T.; Sun, Q.; Wang, K. The current agonists and positive allosteric modulators of α 7 nAChR for CNS indications in clinical trials. Acta Pharm. Sin. B, 2017, 7(6), 611-622. doi: 10.1016/j.apsb.2017.09.001 PMID: 29159020
  127. Potasiewicz, A.; Faron-Gorecka, A.; Popik, P.; Nikiforuk, A. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav. Brain Res., 2021, 409, 113338. doi: 10.1016/j.bbr.2021.113338 PMID: 33940049
  128. Liu, Q.; Tang, Z.; Gan, Y.; Wu, W.; Kousari, A.; La Cava, A.; Shi, F.D. Genetic deficiency of β2-containing nicotinic receptors attenuates brain injury in ischemic stroke. Neuroscience, 2014, 256, 170-177. doi: 10.1016/j.neuroscience.2013.10.049 PMID: 24184117
  129. Kamens, H.M.; Miyamoto, J.; Powers, M.S.; Ro, K.; Soto, M.; Cox, R.; Stitzel, J.A.; Ehringer, M.A. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology, 2015, 99, 639-649. doi: 10.1016/j.neuropharm.2015.08.035 PMID: 26318101
  130. Jackson, A.B.; Toma, W.; Contreras, K.M.; Alkhlaif, Y.; Damaj, M.I. The β3 subunit of the nicotinic acetylcholine receptor is required for nicotine withdrawal-induced affective but not physical signs or nicotine reward in mice. Pharmacol. Biochem. Behav., 2019, 183, 1-5. doi: 10.1016/j.pbb.2019.05.003 PMID: 31145916
  131. Semenova, S.; Contet, C.; Roberts, A.J.; Markou, A. Mice lacking the β4 subunit of the nicotinic acetylcholine receptor show memory deficits, altered anxiety- and depression-like behavior, and diminished nicotine-induced analgesia. Nicotine Tob. Res., 2012, 14(11), 1346-1355. doi: 10.1093/ntr/nts107 PMID: 22573727
  132. Roberts, J.P.; Stokoe, S.A.; Sathler, M.F.; Nichols, R.A.; Kim, S. Selective coactivation of α7- and α4β2-nicotinic acetylcholine receptors reverses beta-amyloid–induced synaptic dysfunction. J. Biol. Chem., 2021, 296, 100402. doi: 10.1016/j.jbc.2021.100402 PMID: 33571523
  133. Jenny, L. Advances in the in vitro and in vivo pharmacology of alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology., 2020, 168, 108008.
  134. Gallagher, R.; Qudah, T.; Balle, T.; Chebib, M.; McLeod, M.D. Novel methyllycaconitine analogues selective for the α4β2 over α7 nicotinic acetylcholine receptors. Bioorg. Med. Chem., 2021, 51, 116516. doi: 10.1016/j.bmc.2021.116516 PMID: 34798380
  135. Hernández-Sámano, A.C.; Falcón, A.; Zamudio, F.; Arellano, O.M.A.; Vera, L.E.; Aguilar, M.B. A turripeptide from Polystira nobilis venom inhibits human α3β2 and α7 nicotinic acetylcholine receptors. Insect Biochem. Mol. Biol., 2020, 124, 103416. doi: 10.1016/j.ibmb.2020.103416 PMID: 32592834
  136. Angelantonio, D.S.; De Stefano, M.E.; Piccioni, A.; Lombardi, L.; Gotti, C.; Paggi, P. Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiol. Dis., 2011, 41(2), 528-537. doi: 10.1016/j.nbd.2010.10.024 PMID: 21056666
  137. Chang, Y.; Banerjee, J.; Dowell, C.; Wu, J.; Gyanda, R.; Houghten, R.A.; Toll, L.; Mcintosh, J.M.; Armishaw, C.J. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library. J Med Chem., 2014, 57(8), 3511-3521.
  138. Perniss, A.; Latz, A.; Boseva, I.; Papadakis, T.; Dames, C.; Meisel, C.; Meisel, A.; Scholze, P.; Kummer, W.; Christ, K.G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int. Immunopharmacol., 2020, 84, 106496. doi: 10.1016/j.intimp.2020.106496 PMID: 32304995
  139. Wu, J.; Liu, Q.; Tang, P.; Jens, D. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci, 2016, 37(7), 562-574.
  140. Williams, G.; Murray, T.A. Louisiana Tech University; R. Grace Williams, 1542.
  141. Tarasenko, O.; Voytenko, S.; Koval, L.; Lykhmus, O.; Kalashnyk, O.; Skok, M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int. Immunopharmacol., 2020, 82, 106373. doi: 10.1016/j.intimp.2020.106373 PMID: 32163855
  142. Havekes, R.; Abel, T.; Van der Zee, E.A. The cholinergic system and neostriatal memory functions. Behav. Brain Res., 2011, 221(2), 412-423. doi: 10.1016/j.bbr.2010.11.047 PMID: 21129408
  143. Campbell, B.A. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science., 1979, 205, 929-932.
  144. Wilkerson, A.; Levin, E.D. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience., 1999, 89(3), 743-749. doi: 10.1016/S0306-4522(98)00346-7
  145. Neill, M.O.; Brown, V.J. The Effect of Striatal Dopamine Depletion and the Adenosine A 2A Antagonist KW-6002 on Reversal Learning in Rats. Neurobiol Learn Mem, 2007, 88(3), 75-81. doi: 10.1016/j.nlm.2007.03.003
  146. Korpi, E.R.; Gründer, G.; Lüddens, H. Drug interactions at GABA(A) receptors. Prog Neurobiol, 2002, 67(2), 113-159.
  147. Govindpani, K.; Guzm, B.C.; Vinnakota, C.; Waldvogel, H.J.; Id, R.L.F.; Kwakowsky, A. Towards a better understanding of GABAergic remodeling in Alzheimer's disease. Int J Mol Sci, 2017, 18(8), 1813. doi: 10.3390/ijms18081813
  148. Nakhate, K. Cognitive informatics, computer modeling, and cognitive science application to neural. Acad. Press, 2020, 2, 21-47. doi: 10.1016/B978-0-12-819445-4.00002-3
  149. Van Erum, J.; Van Dam, D.; Deyn, P.P. Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neurosci. Biobehav. Rev., 2019, 105, 72-80. doi: 10.1016/j.neubiorev.2019.07.019 PMID: 31377219
  150. Charnay, Y. Pharmacological aspects. Dialogues Clin Neurosci, 2010, 12(4), 471-487.
  151. Terry, A.V., Jr; Buccafusco, J.J.; Wilson, C. Cognitive dysfunction in neuropsychiatric disorders: Selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res., 2008, 195(1), 30-38. doi: 10.1016/j.bbr.2007.12.006 PMID: 18241938
  152. Rodrı, J. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol, 2012, 99(1), 15-41. doi: 10.1016/j.pneurobio.2012.06.010
  153. Haam, J.; Yakel, J.L. Cholinergic modulation of the hippocampal region and memory function. HHS Public Access., 2018, 142, 111-121. doi: 10.1111/jnc.14052.Cholinergic
  154. Velazquez, R.; Ferreira, E.; Knowles, S.; Fux, C.; Rodin, A.; Winslow, W.; Oddo, S. Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell, 2019, 18(6), e13037. doi: 10.1111/acel.13037
  155. Wang, K.; Chen, Q.; Wu, N.; Li, Y.; Zhang, R.; Wang, J.; Gong, D.; Zou, X.; Liu, C.; Chen, J. Berberine ameliorates spatial learning memory impairment and modulates cholinergic anti-inflammatory pathway in diabetic rats. Front. Pharmacol., 2019, 10, 1003. doi: 10.3389/fphar.2019.01003 PMID: 31551793
  156. Ma, S.; Leonard, C.S.; Wisden, W. Andrew dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci. Biobehav. Rev., 2018, 85, 21-33. doi: 10.1016/j.neubiorev.2017.07.009
  157. Callahan, P.M.; Terry, A.V., Jr; Peitsch, M.C.; Hoeng, J.; Koshibu, K. Differential effects of alkaloids on memory in rodents. Sci. Rep., 2021, 11(1), 9843. doi: 10.1038/s41598-021-89245-w PMID: 33972592
  158. Inayat, S.; Nazariahangarkolaee, M.; Singh, S.; Mcnaughton, B.L.; Whishaw, I.Q.; Mohajerani, M.H. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 2020, 43(6), zsz297. doi: 10.1093/sleep/zsz297
  159. Mineur, Y.S.; Picciotto, M.R. The role of acetylcholine in negative encoding bias: Too much of a good thing? Eur. J. Neurosci., 2021, 53, 114-125. doi: 10.1111/ejn.14641.The
  160. Solari, N.; Hangya, B. Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci., 2018, 48(5), 2199-2230. doi: 10.1111/ejn.14089

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers