Advances in Developing Small Molecule Drugs for Alzheimer's Disease
- Authors: Zhang W.1, Zhang L.1, Lv M.1, Fu Y.1, Meng X.1, Wang M.2, Wang H.1
-
Affiliations:
- School of Basic Medical Science, Xinxiang Medical University
- School of Medical Technology, Xinxiang Medical University
- Issue: Vol 21, No 4 (2024)
- Pages: 221-231
- Section: Medicine
- URL: https://cardiosomatics.ru/1567-2050/article/view/643774
- DOI: https://doi.org/10.2174/0115672050329828240805074938
- ID: 643774
Cite item
Full Text
Abstract
Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.
About the authors
Wei Zhang
School of Basic Medical Science, Xinxiang Medical University
Email: info@benthamscience.net
Liujie Zhang
School of Basic Medical Science, Xinxiang Medical University
Email: info@benthamscience.net
Mingti Lv
School of Basic Medical Science, Xinxiang Medical University
Email: info@benthamscience.net
Yun Fu
School of Basic Medical Science, Xinxiang Medical University
Email: info@benthamscience.net
Xiaowen Meng
School of Basic Medical Science, Xinxiang Medical University
Email: info@benthamscience.net
Mingyong Wang
School of Medical Technology, Xinxiang Medical University
Author for correspondence.
Email: info@benthamscience.net
Hecheng Wang
School of Basic Medical Science, Xinxiang Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Tatulian SA. Challenges and hopes for Alzheimers disease. Drug Discov Today 2022; 27(4): 1027-43. doi: 10.1016/j.drudis.2022.01.016 PMID: 35121174
- Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9(1): 92. doi: 10.1186/s13041-016-0272-9 PMID: 27809929
- Peng C, Trojanowski JQ, Lee VMY. Protein transmission in neurodegenerative disease. Nat Rev Neurol 2020; 16(4): 199-212. doi: 10.1038/s41582-020-0333-7 PMID: 32203399
- Alzheimers disease facts and figures. Alzheimers Dement 2023; 19(4): 1598-695. doi: 10.1002/alz.13016 PMID: 36918389
- Alzheimers disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89. doi: 10.1002/alz.12638 PMID: 35289055
- Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis 2020; 12 doi: 10.1177/1179573520907397 PMID: 32165850
- Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46. doi: 10.1016/S0140-6736(20)30367-6 PMID: 32738937
- Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimers disease drug development pipeline: 2019. Alzheimers Dement (N Y) 2019; 5(1): 272-93. doi: 10.1016/j.trci.2019.05.008 PMID: 31334330
- Shukla R, Singh TR. Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimers disease. J Biomol Struct Dyn 2020; 38(1): 248-62. doi: 10.1080/07391102.2019.1571947 PMID: 30688165
- Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel Alzheimers therapeutics. Int J Mol Sci 2020; 21(3): 703. doi: 10.3390/ijms21030703 PMID: 31973122
- Jabir NR, Rehman MT, Alsolami K, et al. Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: In pursuit of Alzheimers treatment. Ann Med 2021; 53(1): 2332-44. doi: 10.1080/07853890.2021.2009124 PMID: 34889159
- Griffiths J, Grant SGN. Synapse pathology in Alzheimers disease. Semin Cell Dev Biol 2023; 139: 13-23. doi: 10.1016/j.semcdb.2022.05.028 PMID: 35690535
- Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimers disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2021; 167: 382-94. doi: 10.1016/j.ijbiomac.2020.11.192 PMID: 33278431
- Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimers disease. Neurotherapeutics 2022; 19(1): 173-85. doi: 10.1007/s13311-021-01146-y PMID: 34729690
- Thal DR, Tomé SO. The central role of tau in Alzheimers disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull 2022; 190: 204-17. doi: 10.1016/j.brainresbull.2022.10.006 PMID: 36244581
- Lee WJ, Brown JA, Kim HR, et al. Regional Aβ- tau interactions promote onset and acceleration of Alzheimer's disease tau spreading. Neuron 2022; 110(12): 1932-1943.e5. doi: 10.1016/j.neuron.2022.03.034
- Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat Rev Drug Discov 2022; 21(4): 306-18. doi: 10.1038/s41573-022-00391-w PMID: 35177833
- Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimers disease: Targeting β-amyloid and beyond. Transl Neurodegener 2022; 11(1): 18. doi: 10.1186/s40035-022-00292-3 PMID: 35300725
- Walker LC. Aβ plaques. Free Neuropathol 2020; 11(31): 3025. doi: 10.17879/freeneuropathology-2020-3025
- Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimers disease: Challenges, successes and future. Signal Transduct Target Ther 2023; 8(1): 248. doi: 10.1038/s41392-023-01484-7 PMID: 37386015
- Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimers disease: Where we are, and where we are going. Curr Opin Neurobiol 2020; 61: 40-8. doi: 10.1016/j.conb.2019.11.024 PMID: 31863938
- Bordone MP, Salman MM, Titus HE, et al. The energetic brain A review from students to students. J Neurochem 2019; 151(2): 139-65. doi: 10.1111/jnc.14829 PMID: 31318452
- Sinsky J, Pichlerova K, Hanes J. Tau protein interaction partners and their roles in Alzheimers disease and other tauopathies. Int J Mol Sci 2021; 22(17): 9207. doi: 10.3390/ijms22179207 PMID: 34502116
- Venkatramani A, Panda D. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies. Int J Biol Macromol 2019; 133: 473-83. doi: 10.1016/j.ijbiomac.2019.04.120 PMID: 31004638
- Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: Getting trial-ready. Nat Rev Neurol 2022; 18(7): 389-99. doi: 10.1038/s41582-022-00645-6 PMID: 35379951
- Ovejero-Benito MC, Ochoa D, Enrique-Benedito T, et al. Pharmacogenetics of donepezil and memantine in healthy subjects. J Pers Med 2022; 12(5): 788. doi: 10.3390/jpm12050788 PMID: 35629210
- Li X, Jia Y, Li J, et al. Novel and potent acetylcholinesterase inhibitors for the treatment of Alzheimers disease from natural (±)-7,8-dihydroxy-3-methyl-isochroman-4-one. Molecules 2022; 27(10): 3090. doi: 10.3390/molecules27103090 PMID: 35630563
- Calhoun A, King C, Khoury R, Grossberg GT. An evaluation of memantine ER + donepezil for the treatment of Alzheimers disease. Expert Opin Pharmacother 2018; 19(15): 1711-7. doi: 10.1080/14656566.2018.1519022 PMID: 30244611
- Shi M, Chu F, Zhu F, Zhu J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimers disease: A focus on aducanumab and lecanemab. Front Aging Neurosci 2022; 14: 870517. doi: 10.3389/fnagi.2022.870517 PMID: 35493943
- Sims JR, Zimmer JA, Evans CD, et al. Donanemab in Early Symptomatic Alzheimer Disease. JAMA 2023; 330(6): 512-27. doi: 10.1001/jama.2023.13239 PMID: 37459141
- Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, et al. Therapeutic approach to Alzheimers disease: Current treatments and new perspectives. Pharmaceutics 2022; 14(6): 1117. doi: 10.3390/pharmaceutics14061117 PMID: 35745693
- Bateman RJ, Cummings J, Schobel S, et al. Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimers disease. Alzheimers Res Ther 2022; 14(1): 178. doi: 10.1186/s13195-022-01110-8 PMID: 36447240
- Vukicevic M, Fiorini E, Siegert S, et al. An amyloid beta vaccine that safely drives immunity to a key pathological species in Alzheimers disease: Pyroglutamate amyloid beta. Brain Commun 2022; 4(1): fcac022. doi: 10.1093/braincomms/fcac022 PMID: 35479516
- Dubois B, López-Arrieta J, Lipschitz S, et al. Masitinib for mild-to-moderate Alzheimers disease: Results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res Ther 2023; 15(1): 39. doi: 10.1186/s13195-023-01169-x PMID: 36849969
- Huang LK, Kuan YC, Lin HW, Hu CJ. Clinical trials of new drugs for Alzheimer disease: A 20202023 update. J Biomed Sci 2023; 30(1): 83. doi: 10.1186/s12929-023-00976-6 PMID: 37784171
- Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci 2023; 181: 106324. doi: 10.1016/j.ejps.2022.106324 PMID: 36347444
- Baig MH, Ahmad K, Rabbani G, Danishuddin M, Choi I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr Neuropharmacol 2018; 16(6): 740-8. doi: 10.2174/1570159X15666171016163510 PMID: 29046156
- Wang B, Dai P, Ding D, et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol 2019; 15(2): 141-50. doi: 10.1038/s41589-018-0183-4 PMID: 30559427
- Chan HCS, Li Y, Dahoun T, Vogel H, Yuan S. New binding sites, new opportunities for GPCR drug discovery. Trends Biochem Sci 2019; 44(4): 312-30. doi: 10.1016/j.tibs.2018.11.011 PMID: 30612897
- Kim EY, Im JH, Han J, Cho WJ. Structure-based design and synthesis of sulfonylureas as novel NLRP3 inhibitors for Alzheimers disease. Bioorg Med Chem Lett 2024; 99: 129622. doi: 10.1016/j.bmcl.2024.129622 PMID: 38244940
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
- Ragonis-Bachar P, Axel G, Blau S, Ben-Tal N, Kolodny R, Landau M. What can ALPHAFOLD do for antimicrobial amyloids? Proteins 2024; 92(2): 265-81. doi: 10.1002/prot.26618 PMID: 37855235
- Llanes LC, Kuehlewein I, França IV, da Silva LV, da Cruz Junior JW. Anticholinesterase agents for Alzheimers disease treatment: An updated overview. Curr Med Chem 2023; 30(6): 701-24. doi: 10.2174/0929867329666220803113411 PMID: 35927804
- Lv MT, Wang HC, Meng XW, et al. In silico and in vitro analyses of a novel FOXO1 agonist reducing Aβ levels via downregulation of BACE1. CNS Neurosci Ther 2024; 30(3): e14140. doi: 10.1111/cns.14140 PMID: 36892036
- Makarasen A, Kuno M, Patnin S, et al. Molecular docking studies and synthesis of amino-oxy-diarylquinoline derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Drug Res (Stuttg) 2019; 69(12): 671-82. doi: 10.1055/a-0968-1150 PMID: 31698495
- Vilar S, Sobarzo-Sánchez E, Uriarte E. In silico prediction of P-glycoprotein binding: Insights from molecular docking studies. Curr Med Chem 2019; 26(10): 1746-60. doi: 10.2174/0929867325666171129121924 PMID: 29189117
- Ye W, Wang W, Jiang C, Yu Q, Chen H. Molecular dynamics simulations of amyloid fibrils: An in silico approach. Acta Biochim Biophys Sin (Shanghai) 2013; 45(6): 503-8. doi: 10.1093/abbs/gmt026 PMID: 23532062
- Nunes RR, Fonseca AL, Pinto ACS, et al. Brazilian malaria molecular targets (BraMMT): Selected receptors for virtual high-throughput screening experiments. Mem Inst Oswaldo Cruz 2019; 114: e180465. doi: 10.1590/0074-02760180465 PMID: 30810604
- Muratov EN, Bajorath J, Sheridan RP, et al. QSAR without borders. Chem Soc Rev 2020; 49(11): 3525-64. doi: 10.1039/D0CS00098A PMID: 32356548
- Kumar A, Nandi S, Saxena AK. Antidepressant drug design on TCAs and phenoxyphenylpropylamines utilizing QSAR and pharmacophore modeling. Comb Chem High Throughput Screen 2022; 25(3): 451-61. doi: 10.2174/1386207323666200901104222 PMID: 32875980
- Giordano D, Biancaniello C, Argenio MA, Facchiano A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals (Basel) 2022; 15(5): 646. doi: 10.3390/ph15050646 PMID: 35631472
- Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
- Fang J, Zhang P, Wang Q, et al. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimers disease. Alzheimers Res Ther 2022; 14(1): 7. doi: 10.1186/s13195-021-00951-z PMID: 35012639
- Winchester LM, Harshfield EL, Shi L, et al. Artificial intelligence for biomarker discovery in Alzheimers disease and dementia. Alzheimers Dement 2023; 19(12): 5860-71. doi: 10.1002/alz.13390 PMID: 37654029
- Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93. doi: 10.1016/j.drudis.2020.10.010 PMID: 33099022
- Subramanian M, Wojtusciszyn A, Favre L, et al. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J Transl Med 2020; 18(1): 472. doi: 10.1186/s12967-020-02658-5 PMID: 33298113
- Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41(3): 1427-73. doi: 10.1002/med.21764 PMID: 33295676
- Ren F, Aliper A, Chen J, et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2024; 2024: 02143-0. doi: 10.1038/s41587-024-02143-0 PMID: 38459338
- Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine Learning Methods in Drug Discovery. Molecules 2020; 25(22): 5277. doi: 10.3390/molecules25225277 PMID: 33198233
- Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 2019; 37(9): 1038-40. doi: 10.1038/s41587-019-0224-x PMID: 31477924
- Amarreh I, Meyerand ME, Stafstrom C, Hermann BP, Birn RM. Individual classification of children with epilepsy using support vector machine with multiple indices of diffusion tensor imaging. Neuroimage Clin 2014; 4: 757-64. doi: 10.1016/j.nicl.2014.02.006 PMID: 24936426
- Shi C, Dong F, Zhao G, Zhu N, Lao X, Zheng H. Applications of machine-learning methods for the discovery of NDM-1 inhibitors. Chem Biol Drug Des 2020; 96(5): 1232-43. doi: 10.1111/cbdd.13708 PMID: 32418370
- Zoffmann S, Vercruysse M, Benmansour F, et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci Rep 2019; 9(1): 5013. doi: 10.1038/s41598-019-39387-9 PMID: 30899034
- Kashyap K, Siddiqi MI. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Mol Divers 2021; 25(3): 1517-39. doi: 10.1007/s11030-021-10274-8 PMID: 34282519
- Hu Y, Zhou G, Zhang C, et al. Identify compounds target against Alzheimers disease based on in silico approach. Curr Alzheimer Res 2019; 16(3): 193-208. doi: 10.2174/1567205016666190103154855 PMID: 30605059
- Jamal S, Grover A, Grover S. Machine learning from molecular dynamics trajectories to predict caspase-8 inhibitors against Alzheimers disease. Front Pharmacol 2019; 10: 780. doi: 10.3389/fphar.2019.00780 PMID: 31354494
- Xie C, Zhuang XX, Niu Z, et al. Amelioration of Alzheimers disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022; 6(1): 76-93. doi: 10.1038/s41551-021-00819-5 PMID: 34992270
- Alokam R, Singhal S, Srivathsav GS, et al. Design of dual inhibitors of ROCK-I and NOX2 as potential leads for the treatment of neuroinflammation associated with various neurological diseases including autism spectrum disorder. Mol Biosyst 2015; 11(2): 607-17. doi: 10.1039/C4MB00570H PMID: 25465055
- Simpson DSA, Oliver PL. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020; 9(8): 743. doi: 10.3390/antiox9080743 PMID: 32823544
- Khezri MR, Ghasemnejad-Berenji M. The role of caspases in Alzheimers disease: Pathophysiology implications and pharmacologic modulation. J Alzheimers Dis 2023; 91(1): 71-90. doi: 10.3233/JAD-220873 PMID: 36442198
- Alkanli SS, Alkanli N, Ay A, Albeniz I. CRISPR/Cas9 mediated therapeutic approach in Huntingtons disease. Mol Neurobiol 2023; 60(3): 1486-98. doi: 10.1007/s12035-022-03150-5 PMID: 36482283
- Imbriani P, Tassone A, Meringolo M, et al. Loss of non-apoptotic role of caspase-3 in the PINK1 mouse model of Parkinsons disease. Int J Mol Sci 2019; 20(14): 3407. doi: 10.3390/ijms20143407 PMID: 31336695
- Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Mol Neurobiol 2022; 59(4): 2288-304. doi: 10.1007/s12035-021-02683-5 PMID: 35066762
- Cancela S, Canclini L, Mourglia-Ettlin G, Hernández P, Merlino A. Neuroprotective effects of novel nitrones: In vitro and in silico studies. Eur J Pharmacol 2020; 871: 172926. doi: 10.1016/j.ejphar.2020.172926 PMID: 31958456
- Xing Y, Li A, Yang Y, Li X, Zhang L, Guo H. The regulation of FOXO1 and its role in disease progression. Life Sci 2018; 193: 124-31. doi: 10.1016/j.lfs.2017.11.030 PMID: 29158051
- Zhang W, Bai S, Yang J, et al. FoxO1 overexpression reduces Aβ production and tau phosphorylation in vitro. Neurosci Lett 2020; 738: 135322. doi: 10.1016/j.neulet.2020.135322 PMID: 32860886
- Zhang W, Bai SS, Zhang Q, et al. Physalin B reduces Aβ secretion through down-regulation of BACE1 expression by activating FoxO1 and inhibiting STAT3 phosphorylation. Chin J Nat Med 2021; 19(10): 732-40. doi: 10.1016/S1875-5364(21)60090-0 PMID: 34688463
- Cooper N, Ghanima W, Hill QA, Nicolson PLR, Markovtsov V, Kessler C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets 2023; 34(1): 2131751. doi: 10.1080/09537104.2022.2131751 PMID: 36331249
- Ennerfelt H, Frost EL, Shapiro DA, et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 2022; 185(22): 4135-4152.e22. doi: 10.1016/j.cell.2022.09.030 PMID: 36257314
- Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin Drug Discov 2021; 16(9): 949-59. doi: 10.1080/17460441.2021.1909567 PMID: 33779453
- Dorahy G, Chen JZ, Balle T. Computer-aided drug design towards new psychotropic and neurological drugs. Molecules 2023; 28(3): 1324. doi: 10.3390/molecules28031324 PMID: 36770990
- Song N, Sun S, Chen K, et al. Emerging nanotechnology for Alzheimers disease: From detection to treatment. J Control Release 2023; 360: 392-417. doi: 10.1016/j.jconrel.2023.07.004 PMID: 37414222
Supplementary files
