Dysregulation of Porphyromonas gingivalis Agmatine Deiminase Expression in Alzheimer’s Disease


Cite item

Full Text

Abstract

Background:Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with a significant burden on global health. AD is characterized by a progressive cognitive decline and memory loss. Emerging research suggests a potential link between periodontitis, specifically the presence of oral bacteria such as Porphyromonas gingivalis (P. gingivalis), and AD progression. P. gingivalis produces an enzyme, Agmatine deiminase (AgD), which converts agmatine to N-carbamoyl putrescine (NCP), serving as a precursor to essential polyamines. Recent studies have confirmed the correlation between disruptions in polyamine metabolism and cognitive impairment.

Objective:This study aims to investigate the dysregulation of P. gingivalis Agmatine deiminase (PgAgD) in the context of AD.

Methods:Saliva samples were collected from a total of 54 individuals, including 27 AD patients and 27 healthy controls. The expression of the PgAgD gene was analyzed using quantitative Real-- Time PCR.

Results:The results showed a significant decrease in PgAgD gene expression in the saliva samples of AD patients compared to healthy controls. This downregulation was found in AD patients with advanced stages of periodontitis. Additionally, a correlation was observed between the decrease in PgAgD expression and the 30-item Mini-Mental State Examination (MMSE) score.

Conclusion:These findings suggest that measuring PgAgD expression in saliva could be a noninvasive tool for monitoring AD progression and aid in the early diagnosis of patients with periodontitis. Further research is needed to validate our results and explore the underlying mechanisms linking periodontitis, PgAgD expression, and AD pathophysiology.

About the authors

Asma Hamdi

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Sana Baroudi

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Alya Gharbi

Neurology Department, Razi University Hospital

Email: info@benthamscience.net

Wafa Babay

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Ahmed Laaribi

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Imene Kacem

Neurology Department, Razi University Hospital

Email: info@benthamscience.net

Saloua Mrabet

Neurology Department, Razi University Hospital

Email: info@benthamscience.net

Ines Zidi

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Naouel Klibi

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Email: info@benthamscience.net

Riadh Gouider

Neurology Department, Razi University Hospital

Email: info@benthamscience.net

Hadda-Imene Ouzari

Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar

Author for correspondence.
Email: info@benthamscience.net

References

  1. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer Report 2015 The Global Impact of Dementia An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer Disease International 2015.
  2. Olsen I, Singhrao SK, Potempa J. Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer’s disease. J Oral Microbiol 2018; 10(1): 1487742. doi: 10.1080/20002297.2018.1487742 PMID: 29963294
  3. Tripathi P, Lodhi A, Rai S, Nandi N, Dumoga S, Yadav P, et al. Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants 2024; 14: 47-74.
  4. Toodayan N. Professor Alois Alzheimer (1864–1915): Lest we forget. J Clin Neurosci 2016; 31: 47-55. doi: 10.1016/j.jocn.2015.12.032 PMID: 27312282
  5. Ivanov SM, Atanasova M, Dimitrov I, Doytchinova IA. Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer’s disease. Sci Rep 2020; 10(1): 10098. doi: 10.1038/s41598-020-67119-x PMID: 32572101
  6. Jia L, Yang J, Zhu M, et al. A metabolite panel that differentiates Alzheimer’s disease from other dementia types. Alzheimers Dement 2022; 18(7): 1345-56. doi: 10.1002/alz.12484 PMID: 34786838
  7. Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96. doi: 10.1016/j.bioorg.2018.12.017 PMID: 30605887
  8. Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88. doi: 10.1007/s12035-020-01945-y PMID: 32462551
  9. Aguayo S, Schuh CMAP, Vicente B, Aguayo LG. Association between Alzheimer’s disease and oral and gut microbiota: Are pore forming proteins the missing link? J Alzheimers Dis 2018; 65(1): 29-46. doi: 10.3233/JAD-180319 PMID: 30040725
  10. Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives. Oral Dis 2011; 17(4): 345-54. doi: 10.1111/j.1601-0825.2010.01773.x PMID: 21122035
  11. Cockburn AF, Dehlin JM, Ngan T, et al. High throughput DNA sequencing to detect differences in the subgingival plaque microbiome in elderly subjects with and without dementia. Investig Genet 2012; 3(1): 19. doi: 10.1186/2041-2223-3-19 PMID: 22998923
  12. Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13: 1151021. doi: 10.3389/fcimb.2023.1151021 PMID: 37333848
  13. Bouftas M. A systematic review on the feasibility of salivary biomarkers for Alzheimer's Disease. J Prev Alzheimers Dis 2020; 8(1): 84-91.
  14. Maki KA, Kazmi N, Barb JJ, Ames N. The oral and gut bacterial microbiomes: Similarities, differences, and connections. Biol Res Nurs 2021; 23(1): 7-20. doi: 10.1177/1099800420941606 PMID: 32691605
  15. Piekut T, Hurła M, Banaszek N, Szejn P, Dorszewska J, Kozubski W. Infectious agents and Alzheimer's disease. J Integr Neurosci 2022; 21(2): 73. doi: 10.31083/j.jin2102073 PMID: 35364661
  16. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 2019; 5: eaau3333.
  17. van de Haar HJ, Burgmans S, Jansen JFA, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology 2016; 281(2): 527-35. doi: 10.1148/radiol.2016152244 PMID: 27243267
  18. Lei S, Li J, Yu J, et al. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int J Oral Sci 2023; 15(1): 3. doi: 10.1038/s41368-022-00215-y PMID: 36631446
  19. Hu Y, Li H, Zhang J, et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in sprague-dawley rats. Front Neurosci 2020; 14: 658. doi: 10.3389/fnins.2020.00658 PMID: 32714134
  20. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16(12): 745-59. doi: 10.1038/s41579-018-0089-x PMID: 30301974
  21. Nie R, Wu Z, Ni J, et al. Porphyromonas gingivalis infection induces amyloid-β accumulation in monocytes/macrophages. J Alzheimers Dis 2019; 72(2): 479-94. doi: 10.3233/JAD-190298 PMID: 31594220
  22. Tang Z, Liang D, Cheng M, et al. Effects of Porphyromonas gingivalis and its underlying mechanisms on Alzheimer-like tau hyperphosphorylation in sprague- dawley rats. J Mol Neurosci 2021; 71(1): 89-100. doi: 10.1007/s12031-020-01629-1 PMID: 32557144
  23. Sete MRC, Carlos JC, Mello-Neto JM, et al. Impact of chronic gingivitis management on the cytokine and anti-PPAD expressions in juvenile systemic lupus erythematosus: A six-month follow-up. J Periodontal Res 2021; 56(6): 1132-40. doi: 10.1111/jre.12924 PMID: 34510434
  24. Zhao X, Liu J, Zhang C, et al. Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase. Int J Oral Sci 2021; 13(1): 31. doi: 10.1038/s41368-021-00136-2 PMID: 34593756
  25. Jones JE, Dreyton CJ, Flick H, Causey CP, Thompson PR. Mechanistic studies of agmatine deiminase from multiple bacterial species. Biochemistry 2010; 49(43): 9413-23. doi: 10.1021/bi101405y PMID: 20939536
  26. Sandusky-Beltran LA, Kovalenko A, Placides DS, et al. Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology. J Clin Invest 2021; 131(4): e126299. doi: 10.1172/JCI126299 PMID: 33586680
  27. Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 2020; 83: 102083. doi: 10.1016/j.npep.2020.102083 PMID: 32873420
  28. Bergin DH, Jing Y, Mockett BG, Zhang H, Abraham WC, Liu P. Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. Transl Psychiatry 2018; 8(1): 108. doi: 10.1038/s41398-018-0149-z PMID: 29802260
  29. Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol 2017; 8: 93. doi: 10.3389/fimmu.2017.00093 PMID: 28223985
  30. Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS MicrobiolRev 2021; 45: fuab034. doi: 10.1093/femsre/fuab034
  31. Reale M, Gonzales-Portillo I, Borlongan CV. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer’s Disease: Present and future applications. Brain Res 2020; 1727: 146535.
  32. Gleerup HS, Hasselbalch SG, Simonsen AH. Biomarkers for Alzheimer’s Disease in saliva: A systematic review. Dis Markers 2019; 2019: 1-11.
  33. François M, Leifert W, Martins R, Thomas P, Fenech M. Biomarkers of Alzheimer’s disease risk in peripheral tissues; focus on buccal cells. Curr Alzheimer Res 2014; 11(6): 519-31. doi: 10.2174/1567205011666140618103827 PMID: 24938500
  34. Ben Jemaa S, Attia Romdhane N, Bahri-Mrabet A, Jendli A, Le Gall D, Bellaj T. An arabic version of the cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-Cog): Reliability, validity, and normative data. J Alzheimers Dis 2017; 60(1): 11-21. doi: 10.3233/JAD-170222 PMID: 28505978
  35. Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J Clin Microbiol 2003; 41(11): 4950-4. doi: 10.1128/JCM.41.11.4950-4954.2003 PMID: 14605122
  36. Paraskevaidi M, Allsop D, Karim S, Martin FL, Crean S. Diagnostic biomarkers for Alzheimer’s disease using non-invasive specimens. J Clin Med 2020; 9(6): 1673. doi: 10.3390/jcm9061673 PMID: 32492907
  37. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27(6): 409-19. doi: 10.1111/j.2041-1014.2012.00663.x PMID: 23134607
  38. Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. The mechanistic pathways of periodontal pathogens entering the brain: The potential role of Treponema denticola in Tracing Alzheimer’s disease pathology. Int J Environ Res Public Health 2022; 19(15): 9386. doi: 10.3390/ijerph19159386 PMID: 35954742
  39. Borsa L, Dubois M, Sacco G, Lupi L. Analysis the link between periodontal diseases and Alzheimer’s disease: A systematic review. Int J Environ Res Public Health 2021; 18(17): 9312. doi: 10.3390/ijerph18179312 PMID: 34501899
  40. Sekula B, Dauter Z. Structural study of agmatine iminohydrolase from Medicago truncatula, the second enzyme of the agmatine route of putrescine biosynthesis in plants. Front Plant Sci 2019; 10: 320. doi: 10.3389/fpls.2019.00320 PMID: 30984210
  41. Wirth M, Benson G, Schwarz C, et al. The effect of spermidine on memory performance in older adults at risk for dementia: A randomized controlled trial. Cortex 2018; 109: 181-8. doi: 10.1016/j.cortex.2018.09.014 PMID: 30388439
  42. Jing YH, Yan JL, Wang QJ, et al. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro. Exp Gerontol 2018; 108: 77-86. doi: 10.1016/j.exger.2018.04.005 PMID: 29649571
  43. Maglione M, Kochlamazashvili G, Eisenberg T, et al. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci Rep 2019; 9(1): 19616. doi: 10.1038/s41598-019-56133-3 PMID: 31873156
  44. Esser D, Alvarez-Llamas G, De Vries MP, Weening D, Vonk RJ, Roelofsen H. Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomark Insights 2008; 3: BMI.S607. doi: 10.4137/BMI.S607 PMID: 19578491
  45. Setti G, Pezzi ME, Viani MV, et al. Salivary MicroRNA for diagnosis of cancer and systemic diseases: A systematic review. Int J Mol Sci 2020; 21(3): 907. doi: 10.3390/ijms21030907 PMID: 32019170
  46. Socha E, Kośliński P, Koba M, et al. Amino acid levels as potential biomarker of elderly patients with dementia. Brain Sci 2020; 10(12): 914. doi: 10.3390/brainsci10120914 PMID: 33260889
  47. Liu P, Fleete MS, Jing Y, et al. Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 2014; 35(9): 1992-2003. doi: 10.1016/j.neurobiolaging.2014.03.013 PMID: 24746363
  48. Mahajan UV, Varma VR, Griswold ME, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med 2020; 17(1): e1003012. doi: 10.1371/journal.pmed.1003012 PMID: 31978055
  49. Mohammed HA, Abdulkareem AA, Zardawi FM, Gul SS. Determination of the accuracy of salivary biomarkers for periodontal diagnosis. Diagnostics (Basel) 2022; 12(10): 2485. doi: 10.3390/diagnostics12102485 PMID: 36292174
  50. Noda K, Lim Y, Goto R, Sengoku S, Kodama K. Cost-effectiveness comparison between blood biomarkers and conventional tests in Alzheimer’s disease diagnosis. Drug Discov Today 2024; 29(3): 103911. doi: 10.1016/j.drudis.2024.103911 PMID: 38311028

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers