Composite Solid Electrolytes
- Autores: Matveev E.S.1
- 
							Afiliações: 
							- Ural Federal University named after the first President of Russia B.N. Yeltsin
 
- Edição: Volume 14, Nº 4 (2024)
- Páginas: 263-275
- Seção: Articles
- URL: https://cardiosomatics.ru/2218-1172/article/view/674215
- DOI: https://doi.org/10.31857/S2218117224040027
- EDN: https://elibrary.ru/MQGNDQ
- ID: 674215
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The review describes composite electrolytes based on classical salt matrix phases, and also shows the possibilities of creating composites using simple or complex oxide matrices, where simple substances, salts, simple and complex oxides are used as heterogeneous dopant. The magnitude of the composite effect of electrical conductivity is discussed from the point of view of various theories of its quantitative description. The reasons for the occurrence of the composite effect are summarized. The effect of increasing ionic conductivity is due to the disorder of the surface layer in the intergranular space, amorphization or spreading of the matrix phase or the phase of heterogeneous dopant over the surface of the other phase due to the difference in surface energy, as well as the possibility of joint manifestation of these effects when using complex oxide eutectic composites with treatment above the temperature of the eutectic system.
Texto integral
 
												
	                        Sobre autores
E. Matveev
Ural Federal University named after the first President of Russia B.N. Yeltsin
							Autor responsável pela correspondência
							Email: Egor.Matveev@urfu.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
Bibliografia
- Yaroslavtsev A.B. // Russ. Chem. Rev. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
- Liang C.C. // J. Electrochem. Soc. 1973. V. 120. № 10. P. 1289. https://doi.org/10.1149/1.2403248
- Jain S.L., Lakeman J.B., Pointon K.D. et al. // J. Fuel Cell Sci. Technol. 2006. V. 4. № 3. P. 280. https://doi.org/10.1115/1.2743073
- Zhu B. // Int. J. Energy. Res. 2006. V. 30. № 11. P. 895. https://doi.org/https://doi.org/10.1002/er.1195
- Hui R., Wang Z., Yick S. et al. // J. Power Sources. 2007. V. 172. № 2. P. 840. https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.05.036
- Belousov V.V, Fedorov S.V. // Russ. Chem. Rev. 2012. V. 81. № 1. P. 44. https://doi.org/10.1070/RC2012v081n01ABEH004209
- Belousov V.V, Schelkunov V.A., Fedorov S.V et al. // Electrochem. Commun. 2012. V. 20. P. 60. https://doi.org/https://doi.org/10.1016/j.elecom.2012.04.001
- Lee S., Kim M., Hwang M. et al. // Exp. Therm. Fluid. Sci. 2013. V. 49. P. 94. https://doi.org/10.1016/j.expthermflusci.2013.04.006
- Kul’Bakin I.V., Fedorov S.V., Vorob’ev A.V. et al. // Russ. J. Electrochem. 2013. V. 49. № 9. P. 982. https://doi.org/10.1134/S1023193513090085
- Lyskov N.V, Metlin Yu.G., Belousov V.V et al. // Solid State Ion. 2004. V. 166. № 1. P. 207. https://doi.org/https://doi.org/10.1016/j.ssi.2003.10.008
- Belousov V.V. // J. Mater. Sci. 2005. V. 40. № 9. P. 2361. https://doi.org/10.1007/s10853-005-1959-y
- Fedorov S.V, Belousov V.V, Vorobiev A.V. // J. Electrochem. Soc. 2008. V. 155. № 12. P. F241. https://doi.org/10.1149/1.2990701
- Belousov V.V, Fedorov S.V, Vorobiev A.V. // J. Electrochem. Soc. 2011. V. 158. № 6. P. B601. https://doi.org/10.1149/1.3561425
- Kul’bakin I.V, Fedorov S. V, Vorob’ev A. V et al. // Russ. J. Electrochem. 2013. V. 49. № 9. P. 878. https://doi.org/10.1134/S1023193513090085
- Yu Q., Jiang K., Yu C. et al. // Chin. Chem. Lett. 2021. V. 32. № 9. P. 2659. https://doi.org/10.1016/j.cclet.2021.03.032
- Yao P., Yu H., Ding Z. et al. // Front. Chem. 2019. V. 7. https://doi.org/10.3389/fchem.2019.00522
- Yaroslavtsev A.B., Karavanova Yu.A., Safronova E. Yu. // Pet. Chem. 2011. V. 51. № 7. P. 473. https://doi.org/10.1134/S0965544111070140
- Golubenko D.V., Shaydullin R.R., Yaroslavtsev A.B. // Colloid Polym. Sci. 2019. V. 297. № 5. P. 741. https://doi.org/10.1007/s00396-019-04499-1
- Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2000. V. 45. № 3.
- Yaroslavtsev A.B. // Russ. Chem. Rev. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
- Maier J. // Prog. Solid State Chem. 1995. V. 23. № 3. P. 171. https://doi.org/10.1016/0079-6786(95)00004-E
- Mateyshina Y., Alekseev D., Uvarov N. // Mater. Today Proc. 2019: pp. 373–376 https://doi.org/10.1016/j.matpr.2019.12.094
- Alekseev D.V., Mateyshina Y.G., Uvarov N.F. // Russ. J. Electrochem. 2021. V. 57. № 10. P. 1037. https://doi.org/10.1134/S1023193521100037
- Alekseev D.V., Mateyshina Y.G., Komarov V.Y. et al. // Mater. Today Proc. 2020. V. 31. №3. P. 576. https://doi.org/10.1016/j.matpr.2020.06.522
- Matsui T., Kukino T., Kikuchi R. et al. // Electrochim. Acta. 2006. V. 51. № 18. P. 3719. https://doi.org/10.1016/j.electacta.2005.10.026
- Muroyama H., Matsui T., Kikuchi R. et al. // J. Phys. Chem. C. 2008. V. 112. № 39. P. 15532. https://doi.org/10.1021/jp8043362
- Ponomareva V.G., Shutova E.S., Lavrova G.V. // Inorg. Mater. 2008. V. 44. № 9. P. 1009. https://doi.org/10.1134/S0020168508090185
- Muroyama H., Akagi T., Matsui T. et al. // Solid State Ion. 2012. V. 225. P. 663. https://doi.org/10.1016/j.ssi.2012.03.037
- Kikuchi R., Ogawa A., Matsuoka T. et al. // Solid State Ion. 2016. V. 285. P. 160. https://doi.org/10.1016/j.ssi.2015.10.008
- Loginov A.V., Bagavieva S.K., Aparnev A.I. et al. // Russ. J. Appl. Chem. 2017. V. 90. № 3. P. 496. https://doi.org/10.1134/S1070427217030259
- Ulikhin A.S., Novozhilov D.V, Khusnutdinov V.R. et al. // Russ. J. Electrochem. 2022. V. 58. № 7. P. 580. https://doi.org/10.1134/S102319352207014X
- Kosheleva E.V, Pentin M.A., Kalinina L.A. et al. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 790. https://doi.org/10.1134/S1023193517070059
- Pentin M.A., Ananchenko B.A., Kalinina L.A. et al. // Russ. J. Electrochem. 2019. V. 55. № 8. P. 785. https://doi.org/10.1134/S1023193519080111
- Pentin M.A., Kalinina L.A., Kosheleva E.V et al. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 840. https://doi.org/10.1134/S1023193521070107
- Ushakova Yu.N., Kalinina L.A., Fominykh E.G. et al. // Russ. J. Electrochem. 2005. V. 41. № 6. P. 625. https://doi.org/10.1007/s11175-005-0115-y
- Ulihin A.S., Uvarov N.F., Mateyshina Y.G. et al. // Solid State Ion. 2006. V. 177. № 26-32. P. 2787. https://doi.org/10.1016/j.ssi.2006.03.018
- Saito M., Nozaki Y., Tokuno H. et al. // Solid State Ion. 2009. V. 180. № 6–8. P. 575. https://doi.org/10.1016/j.ssi.2008.09.009
- Li Z. // Electrochim. Acta. 2010. V. 55. № 24. P. 7298. https://doi.org/10.1016/j.electacta.2010.07.006
- Mateyshina Y., Slobodyuk A., Kavun V. et al. // Solid State Ion. 2018. V. 324. P. 196. https://doi.org/10.1016/j.ssi.2018.04.026
- Rabadanov K.S., Gafurov M.M., Kubataev Z.Y. et al. // Russ. J. Electrochem. 2019. V. 55. № 6. P. 573. https://doi.org/10.1134/s0424857019060173
- Luo Y., Gao H., Zhao X. // Ceram. Int. 2022. V. 48. № 6. P. 8387. https://doi.org/10.1016/j.ceramint.2021.12.045
- Kubataev Z.Yu., Gafurov M.M., Rabadanov K.Sh. et al. // Electrochem. Mater. and Technol. 2024. V. 3. № 1. P. 20243030. https://doi.org/10.15826/elmattech.2024.3.030
- Ponomareva V.G., Lavrova G.V. // Solid State Ion. 2001. V. 145. № 1–4. P. 197. https://doi.org/10.1016/S0167-2738(01)00957-2
- Ponomareva V., Shutova E. // Solid State Ion. 2007. V. 178. № 7–10. P. 729. https://doi.org/10.1016/j.ssi.2007.02.035
- Aparnev A.I., Loginov A.V., Uvarov N.F. et al. // Appl. Sci. 2023. V. 13. № 8. P. 5038. https://doi.org/10.3390/app13085038
- Lavrova G.V, Shutova E.S., Ponomareva V.G. et al. // Russ. J. Electrochem. 2013. V. 49. № 7. P. 718. https://doi.org/10.1134/S1023193513070094
- Mateyshina Y.G., Alekseev D. V, Khusnutdinov V.R. et al. // Mater. Today Proc. V. 12. № 1. P. 13. https://doi.org/10.1016/j.matpr.2019.02.206
- Alekseev D., Khusnutdinov V., Mateyshina Y. // MATEC Web of Conferences. 2021. V. 340. P. 01038. https://doi.org/10.1051/matecconf/202134001038
- Stenina I.A., Kulova T.L., Skundin A.M. et al. // Mater. Res. Bull. 2016. V. 75. P. 178. https://doi.org/10.1016/j.materresbull.2015.11.050
- Kozlova A., Uvarov N., Ulihin A. // Mater. 2022. V. 15. № 17. https://doi.org/10.3390/ma15176079
- Спесивцева В.С. // Международный научный Журн. Альтернативная энергетика и экология. 2011. № 6. P. 21.
- Alyabysheva I.V, Kochetova N.A., Matveev E.S. et al. // Bull. Russ. Acad. Sci.: Phys. 2017. V. 81. № 3. P. 384. https://doi.org/10.3103/S1062873817030030
- Kochetova N., Alyabysheva I., Animitsa I. // Solid State Ion. 2017. V. 306. P. 118. https://doi.org/https://doi.org/10.1016/j.ssi.2017.03.021
- Alyabysheva I.V, Kochetova N.A., Matveev E.S. et al. // Russ. J. Electrochem. 2019. V. 55. № 8. P. 778. https://doi.org/10.1134/S1023193519080032
- Kochetova N.A., Alyabysheva I.V., Matveev E.S. et al. // J. of Siberian Federal University. Chem. 2023. V. 16. № 3. P. 383.
- Porotnikova N., Khrustov A., Farlenkov A. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 4. P. 6180. https://doi.org/10.1021/acsami.1c20839
- Koteneva E.A., Pestereva N.N., Animitsa I.E. et al. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 739. https://doi.org/10.1134/S1023193517070060
- Guseva A.F., Pestereva N.N., Otcheskikh D.D. et al. // Russ. J. Electrochem. 2019. V. 55. № 6. P. 544. https://doi.org/10.1134/S1023193519060090
- Pestereva N.N., Guseva A.F., Kuznetsov D.K. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 12. P. 2482. https://doi.org/10.1134/S0036024420120213
- Guseva A.F., Pestereva N.N., Vostrotina E.L. и др. // Russ. J. Electrochem. 2020. V. 56. № 5. P. 447. https://doi.org/10.31857/s0424857020050035
- Guseva, Pestereva N., Otcheskikh D. et al. // Solid State Ion. 2021. V. 364. https://doi.org/10.1016/j.ssi.2021.115626
- Pestereva N.N., Guseva A.F., Dahle Y.A. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 817. https://doi.org/10.1134/S1023193521080097
- Guseva A.F., Pestereva N.N., Pyrlik E.V. et al. // Inorg. Mater. 2022. V. 58. № 6. P. 612. https://doi.org/10.1134/S0020168522060036
- Гусева А.Ф., Пестерева Н.Н. // Журн. Неорг. Хим. 2023. Т. 68. № 3. С. 426. https://doi.org/10.31857/S0044457X2260164X
- Pestereva N.N., Guseva A.F., Belyatova V.A. et al. // Russ. J. Electrochem. 2023. V. 59. № 8. P. 573. https://doi.org/10.1134/S1023193523080062
- Guseva A.F., Pestereva N.N., Kuznetsov D.K. et al. // Russ. J. Electrochem. 2023. V. 59. № 4. P. 284. https://doi.org/10.1134/S1023193523040079
- Guseva A., Pestereva N., Uvarov N. // Solid State Ion. 2023. V. 394. https://doi.org/10.1016/j.ssi.2023.116196
- Kovalenko A.N., Tugova E.A. // Nanosyst. Phys. Chem. Math. 2018. P. 641. https://doi.org/10.17586/2220-8054-2018-9-5-641-662
- Neiman A.Ya., Pestereva N.N., Sharafutdinov A.R. et al. // Russ. J. Electrochem. 2005. V. 41. № 6. P. 598. https://doi.org/10.1007/s11175-005-0112-1
- Partin G.S., Pestereva N.N., Korona D.V. et al. // Russ. J. Electrochem. 2015. V. 51. № 10. P. 945. https://doi.org/10.1134/S1023193515100109
- Loginov A. V, Bagavieva S.K., Aparnev A.I. et al. // Russю J. Applied Chemistry 2017. V. 90. № 3. P. 496. https://doi.org/10.1134/S1070427217030259
- Loginov A. V, Mateyshina Yu.G., Aparnev A.I. et al. // Russian J. Appl. Chem. 2018. V. 91. № 10. P. 1660. https://doi.org/10.1134/S1070427218100130
- Loginov A. V, Aparnev A.I., Uvarov N.F. // Inorg. Mater. 2022. V. 58. № 4. P. 420. https://doi.org/10.1134/S0020168522040094
- Loginov A. V., Aparnev A.I., Uvarov N.F. // Inorg. Mater. 2022. V. 58. № 8. P. 814. https://doi.org/10.1134/S0020168522080088
- Uvarov N.F. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 700. https://doi.org/10.1134/S1023193517070151
- Rey J.F.Q., Ferreira F.F., Muccillo E.N.S. // Solid State Ion. 2008. V. 179. № 21–26. P. 1029. https://doi.org/10.1016/j.ssi.2007.12.007
- Ponomareva V.G., Bagryantseva I.N. // Phys. Solid State. 2017. V. 59. № 9. P. 1829. https://doi.org/10.1134/S1063783417090244
- Jow T., Wagner J.B. // J. Electrochem. Soc. 1979. V. 126. № 11. P. 1963. https://doi.org/10.1149/1.2128835/META
- Maier J. // J. Phys. Chem. Solids. 1985. V. 46. № 3. P. 309 https://doi.org/10.1016/0022-3697(85)90172-6
- Maier J. // PCCP. 1984. V. 88. № 11. P. 1057. https://doi.org/10.1002/BBPC.198400007
- Maier J. // Mater. Res. Bull. 1985. V. 20. № 4. P. 383. https://doi.org/10.1016/0025-5408(85)90005-4
- Maier J., Reichert B. // PCCP. 1986. V. 90. № 8. P. 66. https://doi.org/10.1002/BBPC.19860900809
- Jow T., Wagner J.B. // J. Electrochem. Soc. 1979. V. 126. № 11. P. 1963. https://doi.org/10.1149/1.2128835/META
- Nan C., Smith D. // Mater. Sci. Eng., B. 1991. V. 10. № 2. P. 99. https://doi.org/10.1016/0921-5107(91)90115-C
- Jiang S., Wagner J. // J. Phys. Chem. Solids. 1995. V. 56. № 8. P. 1113. https://doi.org/10.1016/0022-3697(95)00026-7
- McLachlan D.S., Blaszkiewicz M., Newnham R.E. // J. Am. Ceram. Soc. 1990. V. 73. № 8. P. 2187. https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
- Kirkpatrick S. // Rev. Mod. Phys. 1973. V. 45. № 4. P. 574. https://doi.org/10.1103/RevModPhys.45.574
- Шкловский Б.И. // Успехи физических наук. 1975. Т. 117. № 11. С. 401.
- Нетушил А.В. // Электричество. 1975. № 10. С. 1.
- Bánhegyi G. // Colloid. Polym. Sci. 1986. V. 264. № 12. P. 1030. https://doi.org/10.1007/BF01410321
- Newnham R.E. // Ferroelectr. 1986. V. 68. № 1. P. 1. https://doi.org/10.1080/00150198608238734
- Nan C.W. // Prog. Mater. Sci. 1993. V. 37. № 1. P. 1. https://doi.org/10.1016/0079-6425(93)90004-5
- Roman H.E., Bunde A., Dieterich W. // Phys. Rev. B. 1986. V. 34. № 5. P. 3439. https://doi.org/10.1103/PhysRevB.34.3439
- Dieterich W., Dürr O., Pendzig P. et al. // Phys. A: Stat. Mech. Appl. 1999. V. 266. № 1–4. P. 229. https://doi.org/10.1016/S0378-4371(98)00597-4
- Bunde A. // Solid State Ion. 1995. V. 75. P. 147. https://doi.org/10.1016/0167-2738(94)00146-J
- Uvarov N.F. // Dokl. Phys. Chem. 1997. V. 353. № 1. P. 116.
- Uvarov N.F. // Solid State Ion. 2000. V. 136–137. P. 1267. https://doi.org/10.1016/S0167-2738(00)00585-3
- Uvarov N.F. // Solid State Ion. 2017. V. 302. P. 19. https://doi.org/10.1016/j.ssi.2016.11.021
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









