Transport and structural characteristics of heterogeneous ion-exchange membranes with varied dispersity of the ion exchanger

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The structural and transport (conductivity and diffusion permeability) properties of cation- and anion-exchange membranes with different dispersity of ion-exchange resin particles have been studied. Experimental cation-exchange MK-40 and anion-exchange MA-41 membranes with varying particle sizes of ion exchange resin from <20 μm to <71 μm are manufactured at LLC IE Shchekinoazot (Russia). A comparative analysis of the structural characteristics of membranes using SEM reveals the anisotropy in the properties of the surface and section. The internal phase of the membrane is characterized by large values of the fraction and size of the ion exchanger and macroporosity. A comparison of the concentration dependences of the specific conductivity and diffusion permeability of experimental membranes is performed. Analysis of the values of model transport and structural parameters shows that with a decrease in the size of ion exchanger particles, an increase in the conductivity of the gel phase is observed from 0.39 to 0.47 S/m and from 0.15 to 0.26 S/m for cation- and anion-exchange membranes, as well as a redistribution of current transfer paths in the membrane. An increase in the contribution of transfer through the channel of the internal equilibrium solution is revealed, while the transfer numbers of counterions changes slightly. Information about changes in the structure of transport channels in membranes with different sizes of ion exchanger particles, obtained based on the analysis of model parameters, is consistent with the data of independent studies of the morphology of their surface and section using the SEM method.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Vasil’eva

Voronezh State University

Email: falina@chem.kubsu.ru
Ресей, Universitetskaya sq., Voronezh, 394018

E. Meshcheryakova

Kuban State University

Email: falina@chem.kubsu.ru
Ресей, Stavropolskaya st., 149, Krasnodar, 350040

O. Chernyshova

Kuban State University

Email: falina@chem.kubsu.ru
Ресей, Stavropolskaya st., 149, Krasnodar, 350040

M. Brovkina

Kuban State University

Email: falina@chem.kubsu.ru
Ресей, Stavropolskaya st., 149, Krasnodar, 350040

I. Falina

Kuban State University

Хат алмасуға жауапты Автор.
Email: falina@chem.kubsu.ru
Ресей, Stavropolskaya st., 149, Krasnodar, 350040

E. Akberova

Voronezh State University

Email: falina@chem.kubsu.ru
Ресей, Universitetskaya sq., Voronezh, 394018

S. Dobryden

Voronezh State University

Email: falina@chem.kubsu.ru
Ресей, Universitetskaya sq., Voronezh, 394018

Әдебиет тізімі

  1. Akberova E.M., Vasil’eva V.I. // Electrochemistry Communications. 2020. V. 111. №. 106659.
  2. Vyas P.V., Ray P., Adhikary S.K., Shah B.G., Rangarajan R. // Journal of Colloid and Interface Science. 2003. V. 257. P. 127−134.
  3. Balster J., Yildirim M.H., Stamatialis D.F., Ibanez R., Lammertink R.G.H., Jordan V., Wessling M. // J. Phys. Chem. B. 2007. V. 111. P. 2152−2165.
  4. Davidson S.M., Wessling M., Mani A. // Scientific Reports. 2016. V. 6. № 22505.
  5. Choi J.H., Kim S.H., Moon S.H. // Journal of Colloid and Interface Science. 2001. V. 241. P. 120–126.
  6. Hosseini S.M., Madaeni S.S., Khodabakhshi A.R. // Journal of Membrane Science. 2010. V. 351. P. 178−188.
  7. Hosseini S.M., Madaeni S.S., Heidari A.R., Moghadassi A.R. // Desalination. 2011. V. 279. P. 306–314.
  8. Hosseini S.M., Madaeni S.S., Heidari A.R., Khodabakhshi A.R. // Desalination. 2012. V. 285. P. 253–262.
  9. Mofrad A.E., Moheb A., Masigol M., Sadeghi M., Radmanesh F. // Journal of Colloid and Interface Science. 2018. V. 532. P. 546–556.
  10. Wang B., Wang M., Wang K., Jia Yu. // Desalination. 2016. V. 384. P. 43−51.
  11. Васильева В.И., Жильцова А.В., Акберова Э.М., Фатаева А.И. // Конденсированные среды и межфазные границы. 2014. Т. 16. № 3. С. 257−261.
  12. Vyas P.V., Shah B.G., Trivedi G.S., Ray P., Adhikary S.K., Rangarajan R. // Reactive & Functional Polymers. 2000. V. 44. P. 101–110.
  13. Vyas P.V., Shah B.G., Trivedi G.S., Ray P., Adhikary S.K., Rangarajan R. // Journal of Membrane Science. 2001. V. 187. P. 39–46.
  14. Berezina N.P., Timofeev S.V., Kononenko N.A. // J. Membr. Sci. 2002. V. 209. P. 509−518.
  15. Karpenko, L.V., Demina, O.A., Dvorkina, G.A., Parshikov, S.B., Larchet, C., Auclair B., Berezina N.P. // Russ. J. Electrochem. 2001. V. 37. P. 287–293.
  16. Zabolotsky V.I., Nikonenko V.V. // J. Membr. Sci. 1993. V. 79. P. 181−198.
  17. Демина О.А., Кононенко Н.А., Фалина И.В. // Мембраны и мембранные технологии. 2014. Т. 4. № 2. С. 83−94.
  18. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Advances in Colloid and Interface Sci. 2008. V. 139. P. 3−28.
  19. Рид С., Дж. Б. // Электронно-зондовый микроанализ и растровая электронная микроскопия в геологии. М.: Техносфера, 2008. 232 с.
  20. Васильева В.И., Акберова Э.М., Жильцова А.В., Черных Е.И., Сирота Е.А., Агапов Б.Л. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. № 9. С. 27–34.
  21. Vobecká L., Svoboda M., Beneš J., Belloň T., Slouka Z. // Journal of Membrane Science. 2018. V. 559. P. 127–137.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Microheterogeneous structure of a heterogeneous sulfocation exchange membrane.

Жүктеу (26KB)
3. Fig. 2. SEM images of the surface (a, c) and section (b, d) of initially swollen samples of the MK-40 cation exchange membrane with an ion exchanger particle size of <20 μm (a, b) and 56–71 μm (c, d) at a magnification of 500.

Жүктеу (49KB)
4. Fig. 3. SEM images of the surface (a, c) and section (b, d) of initially swollen samples of the anion-exchange membrane MA-41 with an ion-exchange particle size of <20 μm (a, b) and 56–71 μm (c, d) at a magnification of 500.

Жүктеу (54KB)
5. Fig. 4. The proportion of ion-exchange resin particles with different radii SR from the total area of the conductive phase S0 on the surface (1) and in the section (2) of the MK-40 cation-exchange membrane with an ion-exchange particle size of 56–71 μm.

Жүктеу (21KB)
6. Fig. 5. The proportion of ion-exchange resin particles with different radii SR from the total area of the conducting phase S0 in a section of MK-40 membrane samples with different sizes of ion-exchange resin particles.

Жүктеу (22KB)
7. Fig. 6. Concentration dependences of the specific electrical conductivity of membranes MK-40 (a) and MA-41 (b) in sodium chloride solutions. The numbers on the curves correspond to the largest particle size in the fraction.

Жүктеу (29KB)
8. Fig. 7. Concentration dependences of integral coefficients of diffusion permeability of membranes MK-40 (a) and MA-41 (b) in sodium chloride solutions. The numbers on the curves correspond to the largest particle size in the fraction.

Жүктеу (28KB)
9. Fig. 8. Concentration dependences of counterion transport numbers in cation- (a) and anion-exchange (b) membranes with different particle sizes of ion-exchange resin.

Жүктеу (24KB)

© Russian Academy of Sciences, 2024