Transport properties of MF-4SK perfluorinated membranes modified with zirconium hydrogen phosphate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Physicochemical and transport characteristics of cast and extruded MF-4SK perfluorinated membranes modified with zirconium hydrogen phosphate in an amount of 3–10% are studied. The inorganic phase is formed in the membrane volume by pore-filling method. The effect of zirconium hydrogen phosphate content on the exchange capacity, water content, diffusion permeability for electrolyte solution, hydrogen gas permeability and conductivity at limited humidity of the MF-4SK membrane, as well as the efficiency of its use in a proton exchange membrane fuel cell are studied. A non-monotonic change in transport characteristics from the dopant content is shown. The lowest diffusion permeability and maximum electrical conductivity at low humidity possesses the membrane containing 6% zirconium hydrogen phosphate. The maximum specific power of the proton-exchange membrane fuel cell with modified membranes as a polymer electrolyte is 17% higher compared to the original MF-4SK. This result is caused by lower ohmic resistance and kinetic limitations of membrane-electrode assembly with modified samples compared to the non-modified membrane, revealed on the basis of an analysis of its impedance spectra.

Full Text

Restricted Access

About the authors

I. V. Falina

Kuban State University

Author for correspondence.
Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

E. E. Meshcheryakova

Kuban State University

Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

K. M. Lyapishev

Kuban State University

Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

K. S. Demidenko

Kuban State University

Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

E. V. Titskaya

Kuban State University

Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

S. V. Timofeev

OAO “Plastpolymer”

Email: irina_falina@mail.ru
Russian Federation, 32 Polyustrovsky ave., St. Petersburg, 195197

N. A. Kononenko

Kuban State University

Email: irina_falina@mail.ru
Russian Federation, 149 Stavropol Street, Krasnodar, 350040

References

  1. Safronova E.Yu., Lysova A.A., Voropaeva D.Yu., Yaroslavtsev A.B. // Membranes. 2023. V. 13. № 8. P. 721.
  2. Zhu L., Li Yu., Liu J., He J., Wang L., Lei J. // Petroleum Science. 2022. V. 19. P. 1371.
  3. Lehmann M.L., Tyler L., Self E.C., Yang G., Nanda J., Saito T. // Chem. 2022. V. 8. № 6. P. 1611.
  4. Стенина И.А., Ярославцев А.Б. // Мембраны и мембранные технологии. 2024. Т. 14. № 1. С. 19.
  5. Zaton M., Roziere J., Jones D.J. // Sustainable Energy Fuels. 2017. V. 1. P. 409.
  6. Сафронова Е.Ю., Шалимов А.С., Волков В.И., Ярославцев А.Б. // Высокомолекулярные соединения (серия А). 2013. T. 55. № 11. C. 1359.
  7. Brooker P.R., Bonville L.J., Slattery D.K. // J. Electrochem. Soc. 2013. V. 160. № 1. P. F75.
  8. Rajeswari J., Ziegler Z., Haugen G.M., Hamrock S.J., Herring A.M. // ECS Trans. 2011. V. 41. P. 1561.
  9. Tellez-Cruz M.M., Escorihuela J., Solorza-Feria O., Compañ V. // Polymers. 2021. V. 13. № 18. P. 3064.
  10. Xu Ya., Liang X., Shen X., Yu W., Yang X., Li Q., Ge X., Wu L., Xu T. // J. Membr. Sci. 2024. V. 689. P. 122167.
  11. Guodong X., Anqi K., Feng J., Yuxin L., Zhiyuan Zh., Rongguan L., Bing H., Jing L., Chengwei D., Yuzhen S., Weiwei C. // Fuel. 2024. V. 361. P. 130706.
  12. Saccà A., Gatto I., Carbone A., Pedicini R., Maisano S., Stassi A., Passalacqua E. // Internation J Hydrogen Energy. 2019. V. 44. № 59. P. 31445.
  13. Xiao Sh., Zhang H., Bi Ch., Zhang Yi., Ma Yu., Li X., Zhong H., Zhang Yu. // J. Power Sources. 2010. V. 195. № 24. P. 8000.
  14. Alberti G. // Acc. Chem. Res. 1978. V. 11. № 4. P. 163.
  15. Taniuchi T., Ogawa T., Yoshida M., Nakazono T., Ishihara K.N. // Internation J Hydrogen Energy. 2023. V. 48. № 80. P. 31337.
  16. Pica M., Donnadio A., Casciola M. // Coord. Chem. Rev. 2018. V. 374. P. 218.
  17. Al-Othman A., Nancarrow P., Tawalbeh M., Ka’ki A., El-Ahwal K., El Taher B., Alkasrawi M. // Internation J Hydrogen Energy. 2021. V. 46. № 8. P. 6100.
  18. Costamagna P., Yang C., Bocarsly A.B., Srinivasan S. // Electrochimica Acta. 2002. V. 47. P. 1023.
  19. Zlotorowicz A., Sunde S., Seland F. // Internation J Hydrogen Energy. 2015. V. 40. № 32. P. 9982.
  20. Ozden A., Ercelik M., Ozdemir Ya., Devrim Yi., Ozgur Colpan C. // Internation J Hydrogen Energy. 2017. V. 42. № 33. P. 21501.
  21. Bauer F., Willert-Porada M. // J. Membr. Sci. 2004. V. 223. № 1–2. P. 141.
  22. Chabé J., Bardet M., Gébel G. // Solid State Ionics. 2012. V. 229. P. 20.
  23. Shkirskaya S.A., Kononenko N.A., Timofeev S.V. // Membranes. 2022. V. 12. № 10. P. 979.
  24. Kuan H.-C., Wu C.-S., Chen C.-Y., Yu Z.-Z., Dasari A., Mai Y.-W. // Electrochemical and Solid-State Letters. 2006. V. 9. № 2. P. A76.
  25. Шалимов А.С. и др. Ж. Неорганической химии. 2009. Т. 54. № 3. C. 403.
  26. Kononenko N.A., Fomenko M.A., Volfkovich Yu.M. // Adv. Colloid Interface Sci. 2015. V. 222. P. 425.
  27. Tang Q., Li B., Yang D., Ming P., Zhang C., Wang Y. // Internation J Hydrogen Energy. 2021. V. 46. P. 22040.
  28. Gierke T.D., Munn G.E., Wilson F.C. // J. Polym. Sci., Part B: Polym. Phys. 1981. V. 19. № 11. P. 1687.
  29. Gebel G., Aldebert P., Pineri M. // Macromolecules. 1987. V. 20. P. 1425.
  30. Sigwadi R., Dhlamini M.S., Mokrani T., Ṋemavhola F., Nonjola P.F., Msomi P.F. // Heliyon. 2019. V. 5. № 8. P. e02240.
  31. Trobajo C., Khainakov S.A., Espina A., García J.R. // Chem. Mater. 2000. V. 12. № 6. P. 1787.
  32. Filippov A., Petrova D., Falina I., Kononenko N., Ivanov E., Lvov Yu., Vinokurov V. // Polymers. 2018. V. 10. № 4. P. 366.
  33. Volfkovich Yu.M., Sosenkin V.E. // Russ. Chem. Rev. 2012. V. 81. P. 936.
  34. Novikova S. A., Safronova E. Yu., Lysova A. A., Yaroslavtsev A. B. // Mendeleev Commun. 2010. V. 20. P. 156.
  35. Сафронова Е.Ю. Материалы на основе модифицированных перфторированных сульфосодержащих мембран с новым комплексом функциональных свойств: дисс. док. хим. наук. – М., 2023. – 286 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of MF-4SK and MF-4SK/KFC membrane samples obtained by casting (a) and extrusion (b). The KFC content is indicated near the curves. Peak assignment: * – crystalline regions of tetrafluoroethylene, ** – crystalline phase of Zr(HPO4)2∙H2O.

Download (71KB)
3. Fig. 2. SEM images of the surfaces of the original (a) and CFC-modified extruded (b) and cast (c) membranes, with a dopant content of 9.3 and 10%, respectively.

Download (196KB)
4. Fig. 3. Concentration dependence of diffusion permeability of KFC-modified cast (a) and extruded (b) MF-4SK membranes in HCl solutions. The numbers near the curves indicate the modifier content in the sample.

Download (58KB)
5. Fig. 4. Dependence of the integral coefficient of diffusion permeability for a 0.1 M HCl solution (a) and the hydrogen crossover current density (b) on the content of CFC in MF-4SK cast membranes.

Download (52KB)
6. Fig. 5. Specific electrical conductivity of CFC-modified cast (a) and extruded (b) membranes at different temperatures and RH = 30%. The numbers near the curves correspond to the dopant content in the samples.

Download (49KB)
7. Fig. 6. Volt-ampere and power curves (a) and electrochemical impedance spectra (b) for MEA with cast membranes modified with CFC. The numbers near the curves correspond to the dopant content in the samples.

Download (54KB)

Copyright (c) 2024 Russian Academy of Sciences