Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation Using Track-Etched Membranes
- Autores: Butylskii D.Y.1, Mareev S.A.1, Ryzhkov I.I.2,3, Urtenov M.K.1, Apel P.Y.4, Nikonenko V.V.1
- 
							Afiliações: 
							- Kuban State University
- Institute of Computational Modeling SB RAS
- Siberian Federal University
- Joint Institute for Nuclear Research
 
- Edição: Volume 13, Nº 5 (2023)
- Páginas: 423-432
- Seção: Articles
- URL: https://cardiosomatics.ru/2218-1172/article/view/674331
- DOI: https://doi.org/10.31857/S2218117223050024
- EDN: https://elibrary.ru/YISPKZ
- ID: 674331
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The results of a theoretical analysis of the influence of the electroosmotic flow on the electromigration and convective transport of competing ions separated by the electrobaromembrane method are presented. Separated ions of the same charge sign move in an electric field through the pores of a track-etched membrane to the corresponding electrode, while due to the pressure drop across the membrane, a commensurate counter convective flow is created. A simplified model based on the equation of convective electrodiffusion and Hagen–Poiseuille equation allows the analysis of experimental data applying only the ion effective transport numbers in the membrane pores as fitting parameters. Using a mathematical model described by the system of equations of Nernst–Planck, Navier–Stokes and Poisson, it is shown that the electroosmotic flow can cause the effective transport numbers of competing ions to exceed their values in solution, even if these ions are coions for the membrane.
Sobre autores
D. Butylskii
Kuban State University
														Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 350040, Krasnodar, 149 Stavropolskaya St.						
S. Mareev
Kuban State University
														Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 350040, Krasnodar, 149 Stavropolskaya St.						
I. Ryzhkov
Institute of Computational Modeling SB RAS; Siberian Federal University
														Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 660036, Krasnoyarsk, 50-44 Akademgorodok; Russia, 660041, Krasnoyarsk, 79 Svobodny pr.						
M. Urtenov
Kuban State University
														Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 350040, Krasnodar, 149 Stavropolskaya St.						
P. Apel
Joint Institute for Nuclear Research
														Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 141980, Dubna, 6 Joliot-Curie St						
V. Nikonenko
Kuban State University
							Autor responsável pela correspondência
							Email: v_nikonenko@mail.ru
				                					                																			                												                								Russia, 350040, Krasnodar, 149 Stavropolskaya St.						
Bibliografia
- Tang C., Yaroshchuk A., Bruening M.L. // Chem. Commun. 2020. V. 56. № 74. P. 10954.
- Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chinese J. Chem. Eng. 2017. V. 25. № 11. P. 1606.
- Wang P., Wang M., Liu F., Ding S., Wang X., Du G., Liu J., Apel P., Kluth P., Trautmann C., Wang Y. // Nat. Commun. 2018. V. 9. № 1. P. 569.
- Humplik T., Lee J., O’Hern S.C., Fellman B.A., Baig M.A., Hassan S.F., Atieh M.A., Rahman F., Laoui T., Karnik R., Wang E.N. // Nanotechnology. 2011. V. 22. № 29. P. 292001.
- Wen Q., Yan D., Liu F., Wang M., Ling Y., Wang P., Kluth P., Schauries D., Trautmann C., Apel P., Guo W., Xiao G., Liu J., Xue J., Wang Y. // Adv. Funct. Mater. 2016. V. 26. № 32. P. 5796.
- Beaulieu M., Perreault V., Mikhaylin S., Bazinet L. // Membranes (Basel). 2020. V. 10. № 6. P. 113.
- He R., Girgih A.T., Rozoy E., Bazinet L., Ju X.-R., Aluko R.E. // Food Chem. 2016. V. 197. P. 1008.
- Pismenskaya N., Tsygurina K., Nikonenko V. // Membranes (Basel). 2022. V. 12. № 5. P. 497.
- Nir O., Sengpiel R., Wessling M. // Chem. Eng. J. 2018. V. 346. P. 640.
- Kumar R., Liu C., Ha G.-S., Park Y.-K., Ali Khan M., Jang M., Kim S.-H., Amin M.A., Gacem A., Jeon B.-H. // Chem. Eng. J. 2022. V. 447. P. 137507.
- Ge L., Wu B., Li Q., Wang Y., Yu D., Wu L., Pan J., Miao J., Xu T. // J. Memb. Sci. 2016. V. 498. P. 192.
- Ballet G.T., Hafiane A., Dhahbi M. // J. Memb. Sci. 2007. V. 290. № 1–2. P. 164.
- López J., Reig M., Licon E., Valderrama C., Gibert O., Cortina J.L. // Sep. Purif. Technol. 2022. V. 290. P. 120 914.
- Cecile Urbain Marie G., Perreault V., Henaux L., Carnovale V., Aluko R.E., Marette A., Doyen A., Bazinet L. // Sep. Purif. Technol. 2019. V. 211. P. 242.
- Masson F.-A., Mikhaylin S., Bazinet L. // J. Dairy Sci. 2018. V. 101. № 8. P. 7002.
- Ekman A., Forssell P., Kontturi K., Sundholm G. // J. Memb. Sci. 1982. V. 11. № 1. P. 65.
- Forssell P., Kontturi K. // Sep. Sci. Technol. 1983. V. 18. № 3. P. 205.
- Kontturi K., Pajari H. // Sep. Sci. Technol. 1986. V. 21. № 10. P. 1089.
- Butylskii D.Y., Pismenskaya N.D., Apel P.Y., Sabbatovskiy K.G., Nikonenko V.V. // J. Memb. Sci. 2021. V. 635. P. 119449.
- Butylskii D., Troitskiy V., Chuprynina D., Kharchenko I., Ryzhkov I., Apel P., Pismenskaya N., Nikonenko V. // Membranes (Basel). 2023. V. 13. № 5. P. 455.
- Tang C., Bondarenko M.P., Yaroshchuk A., Bruening M.L. // J. Memb. Sci. 2021. V. 638. P. 119 t684.
- Cui Z.F., Jiang Y., Field R.W. Fundamentals of Pressure-Driven Membrane Separation Processes // Membrane Technology. 2010. P. 1.
- Butylskii D.Y., Troitskiy V.A., Chuprynina D.A., Dammak L., Larchet C., Nikonenko V.V. // Membranes (Basel). 2023.
- Kontturi K., Ojala T., Forssell P. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1984. V. 80. № 12. P. 3379.
- Tang C., Yaroshchuk A., Bruening M.L. // Membranes (Basel). 2022. V. 12. № 6. P. 631.
- Butylskii D.Y., Dammak L., Larchet C., Pismenskaya N.D., Nikonenko V.V. // Russ. Chem. Rev. 2023. V. 92. P. RCR5074.
- Kontturi K., Forssell P., Ekman A. // Sep. Sci. Technol. 1982. V. 17. № 10. P. 1195.
- Kontturi K., Forssell P., Sipilä A.H. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1982. V. 78. № 12. P. 3613.
- Кислый А.Г., Бутыльский Д.Ю., Мареев С.А., Никоненко В.В. // Мембраны и Мембранные технологии. 2021. V. 11. № 2. P. 146.
- Kedem O., Katchalsky A. // Trans. Faraday Soc. 1963. V. 59. P. 1918.
- Филиппов А.Н. // Коллоидный журн. 2018. V. 80. № 6. P. 745.
- Филиппов А.Н. // Коллоидный журн. 2018. V. 80. № 6. P. 758.
- Kedem O., Freger V. // J. Memb. Sci. 2008. V. 310. № 1–2. P. 586.
- Murthy Z.V.P., Chaudhari L.B. // Chem. Eng. J. 2009. V. 150. № 1. P. 181.
- Kelewou H., Lhassani A., Merzouki M., Drogui P., Sellamuthu B. // Desalination. 2011. V. 277. № 1–3. P. 106.
- Kovács Z., Discacciati M., Samhaber W. // J. Memb. Sci. 2009. V. 332. № 1–2. P. 38.
- Hidalgo A.M., León G., Gómez M., Murcia M.D., Gómez E., Macario J.A. // Membranes (Basel). 2020. V. 10. № 12. P. 408.
- Wu F., Feng L., Zhang L. // Desalination. 2015. V. 362. P. 11.
- Zhang Y., Zhang L., Hou L., Kuang S., Yu A. // AIChE J. 2019. V. 65. № 3. P. 1076.
- Ghosh S., Klett R., Fink D., Dwivedi K.K., Vacík J., Hnatowicz V., Červena J. // Radiat. Phys. Chem. 1999. V. 55. № 3. P. 271.
- Apel P., Schulz A., Spohr R., Trautmann C., Vutsadakis V. // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1998. V. 146. № 1–4. P. 468.
- Berezkin V.V., Kiseleva O.A., Nechaev A.N., Sobolev V.D., Churaev N. V. // Kolloidn. Zhurnal. 1994. V. 56. № 2. P. 319.
- Berezkin V. V, Volkov V.I., Kiseleva O.A., Mitrofanova N.V., Sobolev V.D. // Adv. Colloid Interface Sci. 2003. V. 104. № 1–3. P. 325.
- Déjardin P., Vasina E.N., Berezkin V. V., Sobolev V.D., Volkov V.I. // Langmuir. 2005. V. 21. № 10. P. 4680.
- Apel P., Koter S., Yaroshchuk A. // J. Memb. Sci. 2022. V. 653. P. 120 556.
- Nichka V.S., Mareev S.A., Apel P.Y., Sabbatovskiy K.G., Sobolev V.D., Nikonenko V.V. // Membranes (Basel). 2022. V. 12. № 12. P. 1283.
- Apel P.Y. Track-Etching // Encyclopedia of Membrane Science and Technology / Ed. Hoek E.M.V., Tarabara V.V. 2013. P. 332.
- Ryzhkov I.I., Lebedev D.V., Solodovnichenko V.S., Minakov A.V., Simunin M.M. // J. Memb. Sci. 2018. V. 549. P. 616.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





