Interlayer resistance of bilayer membrane to gas permeation
- Autores: Ugrozov V.V.1
- 
							Afiliações: 
							- Financial University under the Government of the Russian Federation
 
- Edição: Volume 14, Nº 1 (2024)
- Páginas: 13-18
- Seção: Articles
- URL: https://cardiosomatics.ru/2218-1172/article/view/674257
- DOI: https://doi.org/10.31857/S2218117224010028
- EDN: https://elibrary.ru/OKZCGC
- ID: 674257
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
To describe gas transfer through a bilayer membrane with a thin selective layer on the surface of a highly permeable gutter layer, it was first proposed to take into account the interlayer resistance arising at the boundary of this membrane layers and a model of gas transfer through a bilayer membrane was developed. An analytical expressions for permeability and selectivity of such a membrane taking into account this resistance is obtained. It is shown that the interlayer resistance can noticeably affect the transport characteristics of the membrane. It is found that even in the case of small diffusion resistance to gas permeation of the gutter layer, its sorption and kinetic parameters influence the permeability and selectivity of the membrane as a whole.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Ugrozov
Financial University under the Government of the Russian Federation
							Autor responsável pela correspondência
							Email: vugr@rambler.ru
				                					                																			                												                	Rússia, 							125993, Moscow, Leningradsky pr., 49						
Bibliografia
- Апель П.Ю., Бобрешова О.В., Волков А.В., Волков В.В.,Никоненко В.В., Стенина И.А., Филиппов А.Н., Ямпольский Ю.П., Ярославцев А.Б. // Мембраны и мембранные технологии. 2019. Т. 9. С. 59.
- Xie K., Fu Q., Qiao G.G., Webley P.A. // J. Membr. Sci.2019. V. 572. P. 38.
- Liang C.Z., Liu J.T., Lai J.-Y., Chung T.-S. // J. Membr.Sci. 2018. V. 563. P. 93.
- Verry М.B., Anderson M., He N., Kweon H., Ji C., Xue S.,Rao E., Lee C., Lin C.-W., Chen D., Jun D., Sant G.,Kaner R.B. // Nano Lett. 2019. V. 19. P. 5036.
- Liang C.Z., Chung T.-S., Lai J.-Y. // Prog. Polym. Sci. 2019. V. 97. P. 101–141.
- Selyanchyn R., Ariyoshi M., Fujikawa S. // Membranes. 2018. V. 8. P. 121.
- Ma С., Wang М., Wang Z., Gao M., Wang J. // Journal of CO2 Utilization. 2020. V.42. 101296.
- Ming Y., Foster A.B., Alshurafa M., Luque- Alled J.M., Gorgojo P.,Kentish S.E., Scholes C. A., Budd P. M. // J. Membr. Sci. 2019.V. 679. N5. P.121697.
- Zhao J., Hea G., Liua G., Pana F., Wua H., Jinc W., Jianga Z. // Progress in Polymer Sci. 2018. V. 80. P. 125.
- Borisov I., Bakhtin D., Luque-Alled J.M., Rybakova A., Makarova V., Foster A.B., Harrison W.J., Volkov V., Polevaya V., Gorgojo P., Prestat E., Budd P.M., Volkov A. // J. Mater. Chem. A. 2019. V. 7. P. 6417.
- Jiang L.Y, Song Z.W. // J. Polym Res . 2011. V. 18. P. 2505.
- Henis J.M.S., Tripodi M.K. // J. Membr. Sci. 1981.V. 8. P. 233.
- Dettori R., Melis C., Cartoixà X., Rurali R, Colombo L. // Advances in Physics: X. 2016. V. 1. N2. P. 246.
- Chen J., Xu X., Zhou J., Li B. // Rev. Mod. Phys. 2022. V. 94. 025002
- Weng C., Li J., Lai J., Liu J., Wang H. // Polymers. 2020. V.12. № 10. P. 2409.
- Ma D., Yuheng Xing Y., Zhang L. // J. Phys.Cond. Matter. 2022.V 35. № 5. 053001.
- Li X., Park W.,Wang Y., Chen Y., Ruan X. // J. Appl. Phys. 2019. V. 125, 045302 .
- Persson B.N.J. // Tribology Letters. 2022. V. 70. № 3. P. 88.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




