Open prospective post-marketing study to support the status of iron metabolism by correcting the diet with the use of dietary supplements Vitaferr in women of reproductive age compared with active control in parallel group



Cite item

Full Text

Abstract

The study included 120 women of reproductive age (18-49 years old) with mild iron deficiency anemia who met the inclusion criteria. The patients were randomized into 2 groups, which were similar in clinical and anthropometric data. The patients of the experimental group received the studied product containing 30 mg of elemental iron in the chelated form of bisglycinate in combination with vitamins C, B6, B12 and L-methylfolate (dietary supplement Vitaferr) 1 capsule 1 time a day with meals. The patients of the control group received a drug containing 100 mg of elemental iron in the form of sulfate in combination with 60 mg of vitamin C - 2 tablets per day. The total duration of therapy for all patients was 60 days. In the present study, the cumulative dose of iron in the experimental group (Vitaferr) was 1800 mg of elemental iron, in the control group 12,000 mg of elemental iron for 2 months (30 mg and 200 mg per day, respectively).

Adjusted for the baseline hemoglobin level, the proportion of patients in the study group who reached the target hemoglobin level was 88.9%, in the control group 94.3%, while there was no statistically significant intergroup difference (p=0.240). There were no statistically significant intergroup differences in hemoglobin, ferritin, and serum iron levels after 60 days in the study and control groups (p>0.05). The study found that 30 mg of iron bisglycinate significantly increased ferritin levels (from 24.1 ng/ml to 32.3 ng/ml) from day 15 (Visit 2), and by day 60 (Visit 4), the average serum ferritin level was 39.1 ng/ml, which was also statistically significantly higher than the baseline level (p<0.001).The dynamics of changes in VAS scores in the EQ-5D quality of life questionnaire in both groups did not differ statistically throughout all visits during the study, and by the last visit amounted to 8.68 points in the Vitaferra group and 6.2 points in the control group (p=0.182).

During the safety assessment, a total of 53 AES were registered, 100% of which were HP, characteristic of iron preparations and representing various dyspeptic phenomena. When assessing the incidence of AES, a statistically significant intergroup difference was found in the total number of AES, which was 16 (26.7%) in the Vitaferra group and 37 (61.7%) in the control group (p<0.001).  Thus, the study demonstrated the comparable effectiveness of iron bisglycinate at a dose of 30 mg of elemental Fe (2+) per day and iron sulfate at a dose of 200 mg of elemental Fe (2+) per day in terms of the frequency of patients reaching the target hemoglobin level, the dynamics of the increase in hemoglobin levels, serum iron, and the assessment according to the VAS EQ quality of life scale.-5D, with a lower frequency of adverse events.

About the authors

Bulat A. Bakirov

Bashkir State Medical University

Author for correspondence.
Email: bakirovb@gmail.com
ORCID iD: 0000-0002-3297-1608
Russian Federation

Ildar Nagaev

Bashkir State Medical University

Email: ildarnag007@yandex.ru
ORCID iD: 0000-0001-7844-8866
Russian Federation

Sergey V. Donskov

Petrovax Pharm

Email: donskovsv@petrovax.ru
ORCID iD: 0009-0004-8909-8805
Russian Federation

References

  1. Клинические рекомендации МЗ РФ “Железодефицитная анемия”, 2021, НГО, НОДГО
  2. Camaschella C. Iron deficiency. Blood 2019;133:30–9. https://doi.org/10.1182/blood-2018-05-815944.
  3. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211–59. https://doi.org/10.1016/S0140-6736(17)32154-2.
  4. United Nations Children’s Fund, United Nations University, World Health Organization. Iron deficiency anemia: assessment, prevention and control. A guide for programme managers 2011:114.
  5. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-)
  6. Hertrampf, & Olivares. (2004). Iron amino acid chelates. International journal for vitamin and nutrition research, 74(6), 435-443.
  7. Liao, Zh-Ch, W. T. Guan, F. Chen, D. X. Hou, Ch-X. Wang, Y. T. Lv, H. Z. Qiao, J. Chen, and J. H. Han. "Ferrous bisglycinate increased iron transportation through DMT1 and PepT1 in pig intestinal epithelial cells compared with ferrous sulphate." J. Anim. Feed Sci 23, no. 2 (2014): 153-159.
  8. Pineda, O., & Ashmead, H. D. (2001). Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition, 17(5), 381-384.
  9. Ferrari, P., Nicolini, A., Manca, M. L., Rossi, G., Anselmi, L., Conte, M., Carpi, A., & Bonino, F. (2012). Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 66(6), 414–418. https://doi.org/10.1016/j.biopha.2012.06.003
  10. Abbas, A. M., Abdelbadee, S. A., Alanwar, A., & Mostafa, S. (2019). Efficacy of ferrous bis-glycinate versus ferrous glycine sulfate in the treatment of iron deficiency anemia with pregnancy: a randomized double-blind clinical trial. The Journal of Maternal-Fetal & Neonatal Medicine, 32(24), 4139-4145.
  11. Клинические рекомендации МЗ РФ “Железодефицитная анемия”, 2024
  12. Layrisse M., García-Casal M.N., Solano L., Barón M.A., Arguello F., Llovera D., Ramírez J., Leets I., Tropper E. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J. Nutr. 2000;130:2195–2199. doi: 10.1093/jn/130.9.2195.
  13. Giancotti L., Talarico V., Mazza G.A., Marrazzo S., Gangemi P., Miniero R., Bertini M. Feralgine™ a new approach for iron deficiency anemia in celiac patients. Nutrients. 2019;11:887. doi: 10.3390/nu11040887
  14. Szarfarc S.C., de Cassana L.M., Fujimori E., Guerra-Shinohara E.M., de Oliveira I.M. Relative effectiveness of iron bis-glycinate chelate (Ferrochel) and ferrous sulfate in the control of iron deficiency in pregnant women. Arch. Latinoam. Nutr. 2001;51:42–47
  15. Milman N., Jønsson L., Dyre P., Pedersen P.L., Larsen L.G. Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomized trial. J. Perinat. Med. 2014;42:197–206. doi: 10.1515/jpm-2013-0153.
  16. Latham M.C., Ash D.M., Makola D., Tatala S.R., Ndossi G.D., Mehansho H. Efficacy trials of a micronutrient dietary supplement in schoolchildren and pregnant women in Tanzania. Food. Nutr. Bull. 2003;24:S120–S128. doi: 10.1177/15648265030244S109.
  17. Bumrungpert A, Pavadhgul P, Piromsawasdi T, Mozafari MR. Efficacy and Safety of Ferrous Bisglycinate and Folinic Acid in the Control of Iron Deficiency in Pregnant Women: A Randomized, Controlled Trial. Nutrients. 2022 Jan 20;14(3):452. doi: 10.3390/nu14030452. PMID: 35276810; PMCID: PMC8839493.
  18. Pineda O., Ashmead H.D., Perez J.M., Lemus C.P. Effectiveness of iron amino acid chelate on the treatment of iron deficiency anemia in adolescents. J. Appl. Nutr. 1994;46:2–13.
  19. Duque X., Martinez H., Vilchis-Gil J., Mendoza E., Flores-Hernández S., Morán S., Navarro F., Roque-Evangelista V., Serrano A., Mera R.M. Effect of supplementation with ferrous sulfate or iron bis-glycinate chelate on ferritin concentration in Mexican schoolchildren: A randomized controlled trial. Nutr. J. 2014;13:71. doi: 10.1186/1475-2891-13-71.
  20. Whitehead V.M., Freedman M.H., Rivard G.E., Townsend S.R. Response to folinic acid in B 12-deficiency anaemia. Lancet. 1971;2:552–554. doi: 10.1016/S0140-6736(71)90479-X.
  21. Davidson L.S., Girdwood R.H. Treatment of the megaloblastic anaemias with citrovorum factor. Lancet. 1951;2:1193–1195. doi: 10.1016/S0140-6736(51)93201-1.
  22. Juarez-Vazquez J., Bonizzoni E., Scotti A. Iron plus folate is more effective than iron alone in the treatment of iron deficiency anaemia in pregnancy: A randomised, double blind clinical trial. BJOG. 2002;109:1009–1014. doi: 10.1111/j.1471-0528.2002.01378.x.
  23. Sharma D.C., Mathur R. Correction of anemia and iron deficiency in vegetarians by administration of ascorbic acid. Indian J. Physiol. Pharmacol. 1995;39:403–406.
  24. Chiamchanya N. Rapid recovery time of hemoglobin level in female regular blood donors with ferrous fumarate and high dose of ascorbic acid supplement. J. Med. Assoc. Thai. 2013;96:165–171.
  25. Mei Z., Serdula M.K., Liu J.M., Flores-Ayala R.C., Wang L., Ye R., Grummer-Strawn L.M. Iron-containing micronutrient supplementation of Chinese women with no or mild anemia during pregnancy improved iron status but did not affect perinatal anemia. J. Nutr. 2014;144:943–948. doi: 10.3945/jn.113.189894.
  26. Liu J.M., Mei Z., Ye R., Serdula M.K., Ren A., Cogswell M.E. Micronutrient supplementation and pregnancy outcomes: Double-blind randomized controlled trial in China. JAMA Intern. Med. 2013;173:276–782. doi: 10.1001/jamainternmed.2013.1632.
  27. Haider B.A., Bhutta Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane. Database. Syst. Rev. 2015;11:CD004905. doi: 10.1002/14651858.CD004905.pub4.
  28. Function of integrin in duodenal mucosal uptake of iron. / M.E. Conrad, J.N Umbreit., R.D.A. Peterson [et al.] // Blood. —1993. — Vol. 81 — P. 517–521.
  29. Conrad M. E. Iron absorption-The mucin mobilferrin integrin pathway. A competitive pathway for iron absorption. / M.E. Conrad, J.N. Umbreit.// Am. J. Hematol. — 1993. — Vol. 42 — P. 67–73.
  30. A newly identified iron binding protein in duodenal mucosa of rats. Purification and characterization of mobilferrin. / M.E. Conrad, J.N. Umbreit, E.G. Moore [et al.] // J. Biol. Chem. —1990. — Vol. 265 — P. 5273–5279.
  31. Moscheo, C.; Licciardello, M.; Samperi, P.; La Spina, M.; Di Cataldo, A.; Russo, G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites 2022, 12, 289. https://doi.org/10.3390/metabo12040289
  32. Ferrous bisglycinate increased iron transportation through DMT1 and PepT1 in pig intestinal epithelial cells compared with ferrous sulphate, Zh.-Ch. Liao, W.-T. Guan, F. Chen, D.-X. Hou, Ch.-X. Wang, Y.-T. Lv, H.-Z. Qiao, J. Chen and J.-H. Han. Journal of Animal and Feed Sciences, 23, 2014, 153–159
  33. World Health Organization. (‎2017)‎. Nutritional anaemias: tools for effective prevention and control. World Health Organization. 2017 https://apps.who.int/iris/handle/10665/259425. License: CC BY-NC-SA 3.0 IGO
  34. Железодефицитная анемия: краткое руководство/Р.В.Пономарёв, Н.В.Цветаева, В.Д.Латышев [и др.].-Москва:ГЭОТАР-Медиа, 2024. – 32с. ISBN 978-5-9704-8715-0
  35. Jordie A J Fischer, Arlin M Cherian, Jeffrey N Bone, Crystal D Karakochuk, The effects of oral ferrous bisglycinate supplementation on hemoglobin and ferritin concentrations in adults and children: a systematic review and meta-analysis of randomized controlled trials, Nutrition Reviews, Volume 81, Issue 8, August 2023, Pages 904–920, https://doi.org/10.1093/nutrit/nuac106

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 64546 от 22.01.2016.