Анализ устойчивости растянутой нити полимерного геля

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Проанализирована устойчивость предварительно растянутой и фиксированной за концы цилиндрической нити слабо сшитого полимерного геля относительно варикозных возмущений. Исследовано влияние на динамику возмущений капиллярных сил, упругости геля и взаимодействий и сформулирован критерий возникновения неустойчивости нити. Выведено дисперсионное уравнение и на его основе найдена наиболее быстро растущая мода возмущений, а также определена ее скорость роста в зависимости от макроскопических характеристик геля и радиуса нити.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Субботин

Инстинут нефтехимического синтеза им. А.В. Топчиева Российской академии наук; Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук

Хат алмасуға жауапты Автор.
Email: subbotin@ips.ac.ru
Ресей, 119991, Москва, Ленинский пр., 29; 119071, Москва, Ленинский пр., 31

А. Семенов

Université de Strasbourg

Email: subbotin@ips.ac.ru
Франция, 23, rue du Loess, BP 8404767034, Strasbourg, Cedex 2

Әдебиет тізімі

  1. Eggers J., Villermaux E. // Rep. Prog. Phys. 2008. V. 71. P. 036601.
  2. Bazilevskii A.V., Voronkov S.I., Entov V.M., Rozhkov A.N.// Sov. Phys. Dokl. 1981. V.26. P. 333.
  3. McKinley G.H. Rheologycal Review. Aberystwyth: The British Society of Rheology, 2005. P. 1.
  4. Stelter M., Brenn G., Yarin A. L., Singh R.P., Durst F. // J. Rheol. 2000. V. 44. P. 595.
  5. Stelter M., Brenn G., Yarin A.L., Singh R.P., Durst F. // J. Rheol. 2002. V. 46. P. 507.
  6. Bazilevskii A.B., Rozhkov A.N. // Fluid Dynamics.. 2014. V. 49. P. 827.
  7. Oliveira M.S.N., McKinley G.H. // Phys. Fluids. 2005. V. 17. P. 071704.
  8. Sattler R., Wagner C., Eggers J. // Phys. Rev. Lett. 2008. V. 100. P. 164502.
  9. Bazilevskii A.V., Rozhkov A.N. // Fluid Dynamics. 2015. V. 50. P. 800.
  10. Sattler R., Gier S., Eggers J., Wagner C. // Phys. Fluids. 2012. V. 24. P. 023101.
  11. Deblais A., Velikov K.P., Bonn D. // Phys. Rev. Lett. 2018. V. 120. P. 194501.
  12. Kuzin M.S., Skvortsov I.Yu., Gerasimenko P.S., Subbotin A.V., Malkin A.Ya. // J. Mol. Liq. 2023. V. 392. P. 123516.
  13. Kibbelaar H.V.M., Deblais A., Burla F., Koenderink G.H., Velikov K.P., Bonn D. // Phys. Rev. Fluids. 2020. V. 5. P. 092001(R).
  14. Dinic J., Zhang Y., Jimenez L.N., Sharma V. // ACS Macro Lett. 2015. V. 4. P. 804.
  15. Malkin A.Ya., Semakov A.V., Skvortsov I.Yu., Zatonskikh P., Kulichikhin V.G., Subbotin A.V., Semenov A.N. // Macromolecules. 2017. V. 50. P. 8231.
  16. Dinic J., Sharma V., // PNAS. 2019. V. 116. P. 8766.
  17. Arnolds O., Buggisch H., Sachsenheimer D., Willenbacher N. // Rheol. Acta. 2010. V. 49. P. 1207.
  18. Yarin A.L. Free Liquid Jets and Films: Hydrodynamics and Rheology. New York: Wiley, 1993.
  19. Entov V.M., Hinch E.J. // J. Non-Newtonian Fluid Mech. 1997. V. 72. P. 31.
  20. Clasen C., Eggers J., Fontelos M.A., Li J., McKinley G.H. // J. Fluid Mech. 2006. V. 556. P. 283.
  21. Deblais A., Herrada M.A., Eggers J., Bonn D. // J. Fluid Mech. 2020. V. 904, P. R2.
  22. Eggers J., Herrada M.A., Snoeijer J.H. // J. Fluid Mech. 2020, V. 887. P. A19.
  23. Semenov A., Nyrkova I. // Polymers. 2022. V. 14. P. 4420.
  24. Subbotin A.V., Semenov A.N. // Macromolecules. 2022. V. 55. P. 2096.
  25. Subbotin A.V., Nyrkova I.A., Semenov A.N. // Polymer Science C., 2023. V. 65. № 1. P. 11.
  26. Bazilevskii A.V., Entov V.M., Rozhkov A.N. // Polymer Science A. 2001. V. 43. № 7. P. 716.
  27. Dinic J., Jimenez L.N., Sharma V. // Lab. Chip. 2017. V. 17. P. 460.
  28. Keshavarz B., Sharma V., Houze E.C., Koerner M.R., Moore J.R., Cotts P.M., Threlfall-Holmes P., McKinley G.H. // J. Non-Newtonian Fluid Mech. 2015. V. 222. P. 171.
  29. Tirtaatmadja V., McKinley G.H., Cooper-White J.J. // Phys. Fluids. 2006. V. 18. P. 043101.
  30. Sur S., Rothstein J. // J. Rheol. 2018. V. 62. P. 1245.
  31. Subbotin A.V., Semenov A.N. // J. Rheol. 2023. V. 67. P. 1091.
  32. Subbotin A.V., Semenov A.N. // J. Rheol. 2023. V. 67. P. 53.
  33. Barrière B., Sekimoto K., Leibler L. // J. Chem. Phys. 1996. V. 105. P. 1735.
  34. Snoeijer J.H., Pandey A., Herrada M.A., Eggers J. // Proc. Roy. Soc. A. 2020. V. 476. P. 20200419.
  35. Mora S., Phou T., Fromental J.M., Pismen L.M., Pomeau Y. // Phys. Rev. Lett. 2010. V. 105. P. 214301.
  36. Xuan C., Biggins J. // Phys. Rev. E. 2017. V. 95. P. 053106.
  37. Pandey A., Kansal M., Herrada M.A., Eggers J., Snoeijer J. H. // Soft Matter. 2021. V. 17. P. 5148.
  38. Fong H., Chun I., Reneker D.H. // Polymer. 1999. V. 40. P. 4585.
  39. Yu J.H., Fridrikh S.V., Rutledge G.C. // Polymer. 2006. V. 47. P. 4789.
  40. Helgeson M.E., Grammatikos K.N., Deitzel J.M., Wagner N.J. // Polymer. 2008. V. 49. P. 2924.
  41. Carroll C.P., Joo Y.L. // J. Non-Newt. Fluid Mech. 2008. V. 153. P. 130.
  42. Wang C., Hashimoto T., Wang Y., Lai H.-Y., Kuo C.-H. // Macromolecules. 2018. V. 51. P. 4502.
  43. Kulichikhin V.G., Skvortsov I.Yu., Subbotin A.V., Kotomin S.V., Malkin A.Ya. // Polymers. 2018. V. 10. № 8. P. 856.
  44. Skvortsov I. Yu., Kuzin M.S., Gerasimenko P.S., Patsaev T.D., Subbotin A.V. Kulichikhin V.G. // Phys. Fluids. 2024. V. 36. P. 083117.
  45. Entov V.M. // Arch. Mechanics. 1978. V. 30. № 4–5. P. 453.
  46. Bazilevskii A.V., Entov V.M., Rozhkov A.N. // Fluid Dynamics. 1985. V. 20. P. 169.
  47. Lifshits I.M., Grosberg A.Yu., Khokhlov A.R. // Rev. Mod. Phys. 1978. V. 50. P. 683.
  48. Гросберг А.Ю., Хохлов А.Р. Статистическая физика макромолекул. М.: Наука, 1989.
  49. Kamiyama Y., Tamate R., Hiroi T., Samitsu S., Fujii K., Ueki T. // Sci. Adv. 2022. V. 8. P.eadd0226.
  50. Peng Y.-H., Hsiao S.-K., Gupta K., Ruland S., Auernhammer G.K., Manfred F., Maitz M.F., Boye S., Lattner J., Gerri C., Honigmann A., Werner C., Krieg E. // Nature Nanotechnol. 2023. V. 18. P. 1463.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. A polymer gel filament of length L and radius a (L >> a) that is pre-stretched and fixed at the ends. Colour drawings can be viewed in the electronic version.

Жүктеу (5KB)
3. Fig. 2. Dependence of the reduced wave vector y* corresponding to the maximum growing mode on the parameter α (a) and the reduced maximum growth rate Γ as a function of α (b).

Жүктеу (22KB)
4. Fig. 3. Dependences of the reduced wave vector y* and the corresponding maximum growth rate Γ on θ for α << 1.

Жүктеу (11KB)
5. Fig. 4. Graph of the dimensionless wave vector y = yst (θ) when Γ = 0, α → ∞ and θ > 2.

Жүктеу (8KB)

© Russian Academy of Sciences, 2024