Формирование нановолокон на основе полиакрилонитрила с графитом и их структурные характеристики

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Методом электроспиннинга получены нановолокна на основе полиакрилонитрила с графитом. Изучена структура, а также термические и электрические свойства нановолокон. Показано влияние реологических характеристик растворов и условий процесса электроспиннинга на структуру нановолокон. Выявлены изменения надмолекулярных структурных характеристик нановолокон при электроформовании.

全文:

受限制的访问

作者简介

А. Атаханов

Институт химии и физики полимеров Академии наук Республики Узбекистан

编辑信件的主要联系方式.
Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

Н. Ашуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

Ж. Тураев

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

М. Абдуразаков

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

Н. Ашуров

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

С. Рашидова

Институт химии и физики полимеров Академии наук Республики Узбекистан

Email: a-atakhanov@yandex.com
乌兹别克斯坦, Ташкент

А. Берлин

Институт химической физики им. Н.Н. Семёнова Российской академии наук

Email: a-atakhanov@yandex.com
俄罗斯联邦, Москва

参考

  1. Iijima S. // Nature. 1991. V. 354. Р. 56.
  2. Alosime E.M. // Nanoscale Res. Lett. 2023. V. 18. № 12.
  3. Bhat G.S. // J. Nanomater. Mol. Nanotechnol. 2016. V.5. № 1.
  4. Hagewood J.F. // Int. Fiber J. 2004. V. 19. Р.48.
  5. Reneker D.H., Chun I. // Nanotechnology. 1996. V. 7. Р. 216.
  6. Dzenis Y.A. // Science. 2004. V. 304. № 5679. Р.1917.
  7. Greiner A., Wendorff J.H. // Angew. Chem. Int. Ed. 2007. V. 46. Р.5670.
  8. Yu Z., Borg O., Chen D., Enger B.C., Frøseth V., Rytter E., Wigum H., Holmen A. // Catal. Lett. 2006. V. 109. Р.43.
  9. Tiwari A., Dhakate S.R. // Int. J. Biol. Macromol. 2009. V. 44. № 5. Р.408.
  10. Singha A.S., Rana R.K. // Adv. Mater. Lett. 2010. V. 1. Р. 156.
  11. Chen L., Pang X., Yu G., Zhang J. // Adv. Mater. Lett. 2010. V. 1. № 1. Р. 75.
  12. Yoshimoto H., Shina Y.M., Teraia H., Vacanti P. // Biomaterials. 2003. V. 24. Р. 2077.
  13. Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., Jing X. // J. Control. Release. 2003. V. 92. № 3. Р. 227.
  14. Yu D.G., Zhu L.M., White K., White C.B. // Health. 2009. V. 1. № 2. Р. 67.
  15. Pornsopone V., Supaphol P., Rangkupan R., Tantayanon S. // J. Polym. Res. 2007. V. 14. Р. 53.
  16. Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B., Hadjiargyrou M. // J. Control. Release. 2004. V. 98. № 1. Р. 47.
  17. Huang Z.H., Zhang Y.Z., Kotaki S., Ramakrishna S. // Compos. Sci. Technol. 2003. V. 63. № 15. Р. 2223.
  18. Филатов И.Ю., Филатов Ю.Н., Якушкин М.С. // Вестн. МИТХТ. 2008. Т. 3. № 5. С. 3.
  19. Zhang L., Aboagye A., Kelkar A., Lai C., Fong H. // J. Mater. Sci. 2014. V. 49. Р.463.
  20. Rahaman M.S.A., Ismail A.F., Mustafa A. // Polym. Degrad. Stab. 2007. V. 92. № 8. P. 1421.
  21. Kholmuminov A.A., Ashurov N.Sh., Yunusov M.Yu., Yugai S.M., Ashurov N.R., Rashidova S.Sh. // Polymer Science А. 2013. V. 55. № 1. P. 39.
  22. Kim C., Yang S. // Appl. Phys. Lett. 2003. V. 83. № 6. P. 1216.
  23. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: Наука, 1961.
  24. Мартынов М.А., Вылегжанина К.А. Рентгенография полимеров. Л.: Химия, 1972.
  25. Wendland W.W. Thermal Methods of Analysis. New York: Wiley, 1974.
  26. Берштейн В.А., Егоров В.М. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л.: Химия, 1990.
  27. Ивлев В.И., Фомин Н.Е., Юдин В.А., Окин М.А., Панькин Н.А. // Термический анализ. Саранск: Изд-во Мордовского ун-та, 2017. Ч. 1.
  28. Практикум по физике и химии полимеров/ Под ред. В. Ф. Куренкова М.: Химия, 1990. С. 253.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the effective viscosity ηeff on the shear field velocity gradient γ in semi-logarithmic coordinates: 1 - PAN, 2 - PAN-graphite (95 : 5), 3 - PAN-graphite (50 : 50) in DMFA. Colour figures can be viewed in the electronic version

下载 (122KB)
3. Fig. 2. Dependence of the macromolecule orientation coefficient β on the longitudinal field velocity gradient γ for PAN-graphite suspension (50 : 50) in DMFA at 25 (1), 40 (2) and 55°C (3)

下载 (62KB)
4. Fig. 3. Electron microscopic images of compositions of PAN nanofibres with graphite in the ratio of 95 : 5 (a, b) and 50 : 50 (c, d)

下载 (204KB)
5. Fig. 4. IR spectra of samples of PAN and its composition with graphite: 1 - original PAN; 2 - PAN nanofibres; 3, 4 - nanofibres from composition PAN : graphite = 95 : 5 (3) and 50 : 50 (4)

下载 (143KB)
6. Fig. 5. Diffractograms of samples of PAN and its composition with graphite: 1 - nanofibres of PAN; 2, 3 - nanofibres from composition PAN : graphite = 95 : 5 (2) and 50 : 50 (3)

下载 (239KB)
7. Fig. 6. DSC curves of the original PAN fibre (1), PAN nanofibre (2), PAN : graphite nanofibre = 95 : 5 (3) and 50 : 50) (4) with an enlarged fragment in the region of the cyclisation process occurring

下载 (153KB)
8. Fig. 7. Dependence of direct current I on voltage U for nanofibres based on PAN (1), PAN : graphite composite = 95 : 5 (2) and 50 : 50 (3)

下载 (58KB)
9. Table 1. Effect of electric spinning and graphite additives on the cyclization process of fibrous polyacrylanitrile material

下载 (230KB)
10. Table 2. Sample temperatures corresponding to fixed mass loss values

下载 (152KB)

版权所有 © Russian Academy of Sciences, 2024