Prospects for Application of Guanidine-Containing Organomineral Complexes as Biocidal Functional Additives for Waterborne Polymer Materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of using organomineral complexes of polyhexamethylene guanidine hydrochloride as a functional additive for a waterborne paint based on polyvinyl acetate has been investigated. Organomineral complexes containing 20 and 30 wt % guanidine polymer have been obtained, with intercalation of polyguanidine chains into the interlayer space of montmorillonite being observed. It has been revealed that the stability of the polymer film to water is retained when organomineral complexes are introduced into a polyvinyl acetate dispersion, whereas the water resistance of the film sharply decreases when free polyguanidine is added. There was no significant influence of organomineral complexes on the rheological characteristics of the dispersion and its sedimentation stability. Testing of waterborne paints with various additives has shown that introduction of organomineral complexes into the material prevents the coating from fouling by biofilms of gram-positive bacteria Staphylococcus aureus and Rhodococcus erythropolis, with the hardness, water resistance, and water-vapor transmission of the coatings being retained at a satisfactory level.

Sobre autores

V. Gerasin

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Mendeleev University of Chemical Technology

Email: gerasin@ips.ac.ru
119991, Moscow, Russia; 125047, Moscow, Russia

M. Zhurina

Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences

Email: gerasin@ips.ac.ru
119071, Moscow, Russia

V. Kurenkov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: gerasin@ips.ac.ru
119991, Moscow, Russia

D. Mendeleev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: gerasin@ips.ac.ru
119991, Moscow, Russia

D. Ochenkov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Mendeleev University of Chemical Technology

Email: gerasin@ips.ac.ru
119991, Moscow, Russia; 125047, Moscow, Russia

K. Myat

Mendeleev University of Chemical Technology

Autor responsável pela correspondência
Email: gerasin@ips.ac.ru
125047, Moscow, Russia

Bibliografia

  1. Nichols D. Biocides in Plastics. iSmithers Rapra Publishing. 2005.
  2. D'Arcy N. // Plast. Add. Comp. 2001. V. 3. № 12. P. 12.
  3. Jones A. // Plast. Add. Comp. 2009. V. 11. № 4. P. 26.
  4. Tambe S.P., Jagtap S.D., Chaurasiya A.K., Joshi K.K. // Progr. Organic Coat. 2016. V. 94. P. 49.
  5. Makal U., Wood L., Ohman D.E., Wynne K.J. // Biomaterials. 2006. V. 27. № 8. P. 1316.
  6. Giacomucci L., Raddadi N., Soccio M., Lotti N., Fava F. // New Biotechnology. 2019. V. 52. P. 35.
  7. Kalinina I.G., Gumargalieva K.Z., Semenov S.A. // Protect. Metals Phys. Chem. Surf. 2018. V. 54. № 7. P. 1330.
  8. Halima N.B. // RSC Advances. 2016. V. 6. № 46. P. 39823.
  9. Zhurina M.V., Kallistova A.Y., Panyushkina A.E., Gannesen A.V., Mart’yanov S.V., Gerasin V.A., Sivov N.A., Tikhomirov V.A., Plakunov V.K. // Microbiology. 2020. V. 89. P. 396.
  10. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. // Arch. Toxicology. 2013. V. 87. № 7. P. 1181.
  11. Oule M.K., Azinwi R., Bernier A.M., Kablan T., Maupertuis A.M., Mauler S., Nevry R.K., Dembélé K., Forbes L., Diop L. // J. Medical Microbiol. 2008. V. 57. № 12. P. 1523.
  12. Park D.U., Park J., Yang K.W., Park J.H., Kwon J.H., Oh H.B. // Molecules. 2020. V. 25. № 14. P. 3301.
  13. Gerasin V.A., Mendeleev D.I., Kurenkov V.V., Menyashev M.R. // Russ. J. Appl. Chem. 2018. V. 91. P. 1297.
  14. Holtz R.D., Lima B.A., Souza Filho A.G., Brocchi M., Alves O.L. // Nanomed. Nanotechnol. Biol. Med. 2012. V. 8. № 6. P. 935.
  15. Amann M., Minge O. // Synth. Biodegrad. Polym. 2011. P. 137.
  16. Murray H.H. // Appl. Clay Sci. 2000. V. 17. P. 207.
  17. Sas S., Danko M., Bizovská V., Lang K., Bujdák J. // Appl. Clay Sci. 2017. V. 138. P. 25.
  18. Gerasin V.A., Kurenkov V.V. Pashkov O.V., Ilyin S.O. // Colloid J. 2017. V. 79. P. 588.
  19. Куренков В.В., Пашков О.В., Герасин В.А. // Изв. высших учебных заведений. Сер. “Химия и химическая технология”. 2019. Т. 62. № 8. С. 126.
  20. Plakunov V.K., Mart’yanov S.V., Teteneva N.A., Zhurina M.V. // Microbiology. 2016. V. 85. P. 509.
  21. Assem Y., Khalaf A.I., Rabia A.M., Yehia A.A., Zidan T.A. // Polym. Bull. 2017. V. 74. P. 3015.
  22. Choudalakis G., Gotsis A.D. // Eur. Polym. J. 2009. V. 45. № 4. P. 967.
  23. Langendonk R.F., Neill D.R., Fothergill J.L. // Front. Cellular Infect. Microbiol. 2021. V. 11. P. 665759.
  24. Ciofu O., Tolker-Nielsen T. // Front. Microbiol. 2019. V. 10. P. 913.
  25. Hemati S., Kouhsari E., Sadeghifard N., Maleki A., Omidi N., Mahdavi Z., Pakzad I. // New Microb. New Infect. 2020. V. 38. P. 100794.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (182KB)
3.

Baixar (187KB)
4.

Baixar (320KB)
5.

Baixar (171KB)
6.

Baixar (498KB)

Declaração de direitos autorais © В.А. Герасин, М.В. Журина, В.В. Куренков, Д.И. Менделеев, Д.Е. Оченков, K.K.Htoo Myat, 2023