Composites Based on Biodegradable Polymers and Layered Structures
- Autores: Khlyustova A.V.1, Agafonov A.V.1, Titov V.A.1, Evdokimova A.V.1, Shibaeva V.D.1, Kraev A.S.1, Sirotkin N.A.1
-
Afiliações:
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences
- Edição: Volume 65, Nº 5 (2023)
- Páginas: 384-391
- Seção: КОМПОЗИТЫ
- URL: https://cardiosomatics.ru/2308-1139/article/view/650874
- DOI: https://doi.org/10.31857/S2308113923600016
- EDN: https://elibrary.ru/CRKORV
- ID: 650874
Citar
Resumo
The paper presents the results of mechanical and electrical tests of composite materials based on biodegradable polymers (polyvinyl alcohol, polyacrylamide, starch) and synthetic layered double hydroxides (Ni–Al, Zn–Al) obtained by two-stage (chemical) and one-stage (plasma chemical) methods. The one-stage method for producing composites involves the formation of filler structures during the burning of low-temperature plasma in the bulk of an aqueous polymer solution. Electrode materials were used as precursors. Regardless of the production method, 2D hexagonal structures are formed and embedded in the polymer matrix. This is evidenced by IR spectroscopy data showing shifts in the main characteristic bands and the appearance of new ones. It has been established that layered fillers can be both plasticizers and reinforcing agents. The influence of the viscosity of the polymer matrix on the mechanical characteristics of the composites has been revealed. The introduction of fillers changes the surface roughness, leading to an increase in hydrophobicity of the composites. It has been established that the current–voltage curves of the composites are nonlinear, so that such composites can be considered as flexible analogues of nonlinear electronic components.
Sobre autores
A. Khlyustova
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
A. Agafonov
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
V. Titov
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
A. Evdokimova
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
V. Shibaeva
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
A. Kraev
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
N. Sirotkin
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: kav@isc-ras.ru
153045, Ivanovo, Russia
Bibliografia
- Luo X., Zhu L., Wang Y.C., Li J., Nie J., Wang Z.L. // Adv. Funct. Mater. 2021. V. 31. Art. 2104928.
- Гасанли Ш.М., Самедова У.Ф. // Журн. техн. физики. 2013. Т. 83. № 10. С. 132.
- Степашкина А.С., Алешин А.Н., Рымкевич П.П. // Физика твердого тела. 2015. Т. 57. № 14. С. 814.
- Shin S.H., Kwon Y.H., Lee M.H., Jung J.Y., Seol J.H., Nah J. // Nanoscale. 2016. V. 8. № 3. P. 1314.
- Guan N., Dai X., Babichev A.V., Julien F.H., Tchernycheva M. // Chem. Sci. 2017. V. 8. № 12. P. 7904.
- Кахраманов Н.Т.О., Косева Н.С. // Перспективные материалы. 2019. Т. 3. С. 47.
- Zhou Y., Liu F., Wang H. // Polym. Compos. 2017. V. 38. № 4. P. 803.
- Botan R., Pinheiro I.F., Ferreira F.V., Lona L.M.F. // Mater. Res. Express, 2018. V. 5. P. 6500.
- Zhang Z., Qin J., Zhang W., Pan Y.-T., Wang D.-Y., Yang R. // Chem. Eng. J. 2020. V. 381. P. 122777.
- Quispe-Dominguez R., Naseem S., Leuteritz A., Kuehnert I. // RSC Adv. 2019. V. 9. P. 658.
- Singh M., Somvanshi D., Singh R.K., Mahanta A.K., Maiti P., Misra N., Paik P. // J. Appl. Polym. Sci. 2020. V. 137. № 27. P. 48894.
- Ruiz C.V., López-González M., Giraldo O. // Polym. Test. 2021. V. 94. P. 107057.
- Dinari M., Nabiyan A. // Polym. Compos. 2017. V. 38. P. E128.
- Du M., Ye W., Lv W., Fu H., Zheng Q. // Eur. Polym. J. 2014. V. 61. P. 300.
- Mochane M.J., Magagula S.I., Sefadi J.S., Sadiku E.R., Mokhena T.C. // Crystals. 2020. V. 10. № 7. P. 612.
- Ramaraj B., Nayak S.K., Yoon K.R. // J. Appl. Polym. Sci. 2010. V. 116. P. 1671.
- Zhou K., Gui Z., Hu Y. // Polym. Adv. Technol. 2017. V. 28. № 3. P. 386.
- Hu Z., Chen G. // Adv. Mater. 2014. V. 26. № 34. P. 5950.
- Ma Z., Meng D., Zhang Z., Wang Y. // Thermochim. Acta. 2022. V. 707. Art. 179118.
- Zhao C.X., Liu Y., Wang D.Y., Wang D.L., Wang Y.Z. // Polym. Degrad. Stab. 2008. V. 93. P. 1323.
- De Carvalho A.J.F., Curvelo A.A.S., Agnelli J.A.M. // Carbohydr. Polym. 2001. V. 45. № 2. P. 189.
- Sierakowski M.R., Souza G.P., Wypych F. // Carbohydr. Polym. 2003. V. 52. P. 101.
- Yang F., Kadhim M.S., Babiker M., Elshekh H., Hou W., Huang G., Zhang Y., Zhao Y., Sun B. // Mater. Today Commun. 2019. V. 20. Art. 100573.
- Ali H.E., Khairy Y., Algarni H., Elsaeedy H.I., Alshehri A.M., Yahia I.S. // J. Mater. Sci. Mater. Electron. 2018. V. 29. Art. 20424.
- Elsaeedy H.I., Ali H.E., Algarni H., Yahia I. S. // Appl. Phys. A. 2019. V. 125. P. 79.
- Bidadi H., Olad A., Parhizkar M., Aref S.M., Ghafouri M. // Vacuum. 2013. V. 87. P. 50.
- Das A.K., Dutta B., Sinha S., Mukherjee A., Basu S., Meikap A.K. // AIP Conf. Proceed. 2016. V. 1731. Art. 110036.
- Khlyustova A., Sirotkin N., Kraev A., Agafonov A., Titov V. // Polym. Compos. 2022. V. 43. № 6. P. 4029.
- Ma X., Yu J., Wang N. // Compos. Sci. Technol. 2008. V. 68. № 1. P. 268.
- Wang S., Zhang P., Li Y., Li J., Li X., Yang J., Ji M., Li F., Zhang C. // Carbohydr. Polym. 2023. V. 307. Art. 120627.
- Blyakhman F.A., Safronov A.P., Zubarev A.Y., Shklyar T.F., Makeyev O.G., Makarova E.B., Melekhin V.V., Laranaga A., Kurlyandskaya G.V. // Res. Phys. 2017. V. 7. P. 3624.
- Ohm Y., Pan C., Ford M.J., Huang X., Liao J., Majidi C. // Nature Electronics. 2021. V. 4. № 3. P. 185.
- Khlyustova A., Sirotkin N., Kraev A., Agafonov A., Titov V. // J. Appl. Polym. Sci. 2021. V. 138. № 40. Art. 51174.
- Agafonov A.V., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 253.
- Agafonov A.V., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Inorg. Mater. 2022. V. 58. № 11. P. 1137.
- Khlyustova A., Sirotkin N., Titov V., Agafonov A. // J. Alloys Compnds. 2021. V. 858. Art. 157664.
- Agafonov A.V., Shibaeva V.D., Kraev A.S., Sirotkin N.A., Titov V.A., Khlyustova A.V. // Russ. J. Inorg. Chem. 2023. V. 68. № 1. P. 1.
- Cavani F., Trifiro F., Vaccari A. // Catal. Today. 1991. V. 11. № 2. P. 173.
- Leroux F., Besse J.P. // Chem. Mater. 2001. V. 13. № 10. P. 3507.
- Jiang S.D., Tang G., Bai Z.M., Wang Y.Y., Hu Y., Song L. // RSC Adv. 2014. V. 4. № 7. P. 3253.
- Козлов Г.В. // Успехи физ. наук. 2015. Т. 185. № 1. С. 35.
- Яновский Ю.Г., Козлов Г.В., Карнет Ю.Н. // Физ. мезомеханика. 2012. Т. 15. № 6. С. 21.
- Валиев Х.С., Квасков В.Б. Нелинейные металлооксидные полупроводники. М.: Энергоатомиздат, 1983.
- Wang X., Huang L., Zhang C., Deng Y., Xie P., Liu L., Cheng J. // Carbohydr. Polym. 2020. V. 240. Art. 116292.
- Gürler N., Torğut G. // Polym. Compos. 2021. V. 42. 1. P. 173.
Arquivos suplementares
