Mechanochemical Interaction of Phenylboronic Acid with Polyphenylsilsesquioxane and a Hydroxy(phenyl)siloxane Oligomer
- Autores: Libanov V.V.1, Kapustina A.A.1, Shapkin N.P.1
- 
							Afiliações: 
							- Institute of High Technologies and Advanced Materials, Far Eastern Federal University
 
- Edição: Volume 65, Nº 2 (2023)
- Páginas: 186-192
- Seção: Articles
- URL: https://cardiosomatics.ru/2308-1147/article/view/674794
- DOI: https://doi.org/10.31857/S2308114723700383
- EDN: https://elibrary.ru/GCBWRO
- ID: 674794
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The interaction of phenylboronic acid with polyphenylsiloxane and a hydroxy(phenyl)siloxane oligomer has been studied. For the first time, phenylboronic acid was used as a starting material for the production of polyboronphenylsiloxanes under conditions of mechanochemical activation. It has been established that the main side processes induced by activation are abstraction of the phenyl substituent from the boron atom, formation of biphenyl, and trimerization of phenylboronic acid. Since boron compounds (including phenylboronic acid) have biological activity, their introduction into the polymer chain will make it possible to obtain materials with useful properties. For example, boron-containing polymers can be used as coatings to protect against insect vectors of various diseases. The work is fundamental in nature and contributes to revealing and understanding the mechanisms of mechanochemical modification of organosilicon polymers.
Sobre autores
V. Libanov
Institute of High Technologies and Advanced Materials, Far Eastern Federal University
														Email: libanov.vv@dvfu.ru
				                					                																			                												                								690950, Vladivostok, Russia						
A. Kapustina
Institute of High Technologies and Advanced Materials, Far Eastern Federal University
														Email: libanov.vv@dvfu.ru
				                					                																			                												                								690950, Vladivostok, Russia						
N. Shapkin
Institute of High Technologies and Advanced Materials, Far Eastern Federal University
							Autor responsável pela correspondência
							Email: libanov.vv@dvfu.ru
				                					                																			                												                								690950, Vladivostok, Russia						
Bibliografia
- Santiago A., Gonzalez J., Iruin J., Fernandez-Berridi M.J., Munoz M.E., Irusta L. // Macromol. Symp. (Conf. Paper). 2012. V. 321–322. P. 150.
- Im H., Kim J. // J. Mater. Sci. 2011. V. 46. P. 6571.
- Kujawa J., Kujawski W., Koter S., Rozicka A., Cerneaux S., Persin M., Larbot A. // Coll. Surf. A. 2013. V. 420. P. 64.
- Hao Y., Gao Y., Fan Y., Zhang C., Zhan M., Cao X., Shi X., Guo R. // J. Nanobiotechnol. 2022. V. 20. P. 43.
- Hu J., Ding L., Chen J., Fu J., Zhu K., Guo Q., Huang X., Xiong Y. // J. Nanobiotechnol. 2022. V. 20. P. 21.
- Liu B., Li J., Zhang Z., Roland J.D., Lee B.P. // Chem. Eng. J. 2022. V. 441. № 135808.
- Kim S., Lee J., Im S., Kim W. // J. Controll. Release. 2022. V. 345. P. 138.
- Liu N., Xiang X., Sun M., Li P., Qin H., Liu H., Zhou Y., Wang L., Wu L., Zhu J. // Biosens. Bioelectron. X. 2022. V. 10. № 100110.
- Zhang P., Zhu J., Zhao B., Xu S., Wang L., Luo X. // Chin. J. Anal. Chem. 2022. V. 50. № 100054.
- Zeng Y., Li Y., Liu G., Wei Y., Wu Y., Tao L. // ACS Appl. Polym. Mater. 2020. V. 2. P. 404.
- Zhou Y., Chu F., Yang W., Qiu S., Hu Y. // Composites. B. 2022. V. 238. № 109886.
- Hsu C., Hwang P. // J. Appl. Polym. Sci. 2022. V. 139. № 52135.
- Bugday N., Altin S., Bulut F., Altin E., Yaşar S. // Int. J. Energy Res. 2022. V. 46. P. 7732.
- Стрелецкий А.Н., Дубинская А.М. // Высокомолек. соед. А. 1988. Т. 30. № 7. С. 1442.
- Дубинская А.М., Стрелецкий А.Н. // Высокомолек. соед. А. 1982. Т. 24. № 9. С. 1924.
- Варенцов Е.А., Хрусталев Ю.А. // Успехи химии. 1995. Т. 64. № 8. С. 834.
- Дубинская А.М. // Успехи химии. 1999. Т. 68. № 8. С. 708.
- Новый справочник химика и технолога. Основные свойства неорганических, органических и элементоорганических соединений / Под общ. ред. Н.А. Скворцова. СПб.: Мир и семья, 2002.
- Lappert M.F. // Chem. Rev. 1956. V. 56. P. 959.
- Libanov V.V., Kapustina A.A., Shapkin N.P. // Polymer Science B. 2022. V. 64. № 2. P. 117.
- Крешков А.П. Руководство по анализу кремнийорганических соединений. М.: Госхимиздат, 1962.
- Немодрук А.А., Каралова З.К. Аналитическая химия бора (Сер. “Аналитическая химия элементов”). М.: Наука, 1964.
- Chukin G.D., Ignat’eva L.A. // J. Appl. Spectrosc. 1968. V. 8. P. 527.
- Smith A.L. // Spectrochim. Acta. 1960. V. 16. P. 87.
- Smith A.L. Analysis of Silicones. New York: Wiley, 1974.
- Вилюков В.В., Киреев В.В., Эрян М.А. // Высокомолек. соед. А. 1995. Т. 37. № 4. С. 576.
- Косова Н.В., Девяткина Е.Г., Аввакумов Е.Г. // Химия в интересах устойчивого развития. 1998. Т. 6. С. 125.
- Boldyrev V.V. // Powder Technol. 2002. V. 122. P. 247.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






