Geometric Features of Structuring of Amphiphilic Macromolecules on the Surface of a Spherical Nanoparticle
- Authors: Mitkovskiy D.A.1,2, Lazutin A.A.1, Ushakova A.S.1, Talis A.L.1, Vasilevskaya V.V.1,3
- 
							Affiliations: 
							- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
 
- Issue: Vol 65, No 1 (2023)
- Pages: 5-13
- Section: Articles
- URL: https://cardiosomatics.ru/2308-1147/article/view/674803
- DOI: https://doi.org/10.31857/S2308114723700280
- EDN: https://elibrary.ru/HTLEVM
- ID: 674803
Cite item
Abstract
The self-assembly of amphiphilic homopolymers tightly grafted to the spherical nanoparticle and immersed in a selective solvent is studied by the computer experiment method. Conditions under which macromolecules form thin membrane-like layers surrounding the nanoparticle are determined. It is first shown that the emerging polymer structures may be approximated by complete embedded minimal surfaces satisfying the Weierstrass representation, namely, helicoid, catenoid, and Enneper and Costa surfaces. Mathematical constructions defining these minimal surfaces highlight a new type of ordering of polymer structures and determine its symmetry classification similar to crystal classification by Fedorov groups. Calculations for the two considered sets of parameters show that structures approximated by a helicoid are energetically more favorable than structures approximated by other minimal surfaces.
About the authors
D. A. Mitkovskiy
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
A. A. Lazutin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
A. S. Ushakova
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
A. L. Talis
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: talishome@mail.ru
				                					                																			                												                								119991, Moscow, Russia						
V. V. Vasilevskaya
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Faculty of Chemistry, Lomonosov Moscow State University
							Author for correspondence.
							Email: vvvas@polly.phys.msu.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
References
- Bates F.S., Fredrickson G.H. // Annu. Rev. Phys. Chem. 1990. V. 41. P. 525.
- Lodge T. // Mikrochim. Acta. 1994. V. 116. P. 1.
- Hamley I.W., Koppi K.A., Rosedale J.H., Bates F.S., Almdal K., Mortensen K. // Macromolecules. 1993. V. 26. P. 5959.
- Block Copolymers in Nanoscience / Ed. by M. Lazzari, G. Liu, S. Lecommandoux. Darmstadt: Wiley, 2006.
- Lodge T.P. // Macromol. Chem. Phys. 2003. V. 204. P. 265.
- Leibler L. // Macromolecules. 1980. V. 13. P. 1602.
- Semenov A.N. // JETP. 1985. V. 61. P. 733.
- Ерухимович И.Я., Хохлов А.Р. // Высокомолек. соед. А.1993. Т. 35. № 11. P. 1808.
- Floudas G., Hadjichristidis N., Tselikas Y., Erukhimo-vich I. // Macromolecules. 1997. V. 30. P. 3090.
- Erukhimovich I., Abetz V., Stadler R. // Macromolecules. 1997. V. 30. P. 7435.
- Erukhimovich I.Ya., Smirnova Yu.G., Abetz V. // Polymer Science A. 2003. V. 45. № 11. P. 1093.
- Smirnova Y.G., ten Brinke G., Erukhimovich I.Ya. // J. Chem. Phys. 2006. V. 124. 054907.
- Erukhimovich I.Y. // Eur. Phys. J. E. 2005. V. 18. P. 383.
- Nap R., Sushko N., Erukhimovich I., ten Brinke G. // Macromolecules. 2006. V. 39. P. 6765.
- Kriksin Y.A., Khalatur P.G., Erukhimovich I.Ya., ten Brinke G., Khokhlov A.R. // Soft Matter. 2009. V. 5. P. 2896.
- Glagoleva A., Erukhimovich I., Vasilevskaya V. // Macromol. Theory Simul. 2013. V. 22. P. 31.
- Erukhimovich I. // Polymer Science C. 2018. V. 60. № 2. P. 49.
- Lee S., Bluemle M.J., Bates F.S. // Science. 2010. V. 330. P. 349.
- Hajduk D.A., Harper P.E., Gruner S.M., Honeker C.C., Kim G., Thomas E.L., Fetters L.J. // Macromolecules. 1994. V. 27. P. 4063.
- Thomas E.L., Alward D.B., Kinning D.J., Martin D.C., Handlin D.L., Fetters L.J. // Macromolecules.1986. V. 19. P. 2197.
- Khandpur A.K., Foerster S., Bates F.S., Hamley I.W., Ryan A.J., Bras W., Almdal K., Mortensen K. // Macromolecules. 1995. V. 28. P. 8796.
- Reddy A., Feng X., Thomas E.L., Grason G.M. // Macromolecules. 2021. V. 54. P. 9223.
- Mosseri R., Sadoc J.F. // J. Phys. Colloques. 1990. V. 51. C7–257.
- Talis A., Everstov A., Kraposhin V. // Acta Crystallogr. A. 2021. V. 77. P. 7.
- Castle T., Evans M.E., Hyde S.T., Ramsden S., Robins V. // Interface Focus. 2012. V. 2. P. 555.
- Вайнштейн Б.К. Современная rристаллография. М.: Наука, 1979. Т. 1.
- Тужилин А.А., Фоменко А.Т. Элементы геометрии и топологии минимальных поверхностей. М.: URSS, 2022.
- Фоменко А.Т. Вариационные методы в топологии. М.: Наука, 1982.
- Anetor L. Minimal Surfaces Embedded in Euclidean Space, aster. Differential Geometry. Bucharest: Geometry Balkan Press, 2016.
- Pu W.-F., Ushakova A., Liu R., Lazutin A.A., Vasilevskaya V.V. // J. Chem. Phys. 2020. V. 152. P. 234903.
- Ushakova A.S., Lazutin A.A., Vasilevskaya V.V. // Macromolecules. 2021. V. 54. P. 6285.
- Ushakova A.S., Vasilevskaya V.V. // Polymers. 2022. V. 14. P. 4358.
- Saraev Z.R., Lazutin A.A., Vasilevskaya V.V. // Molecules. 2022. V. 27. P. 8535.
- Lazutin A.A., Vasilevskaya V.V. // Polymer. 2022. V. 255. P. 125172.
- Хоффман Д., Кархер Г. Итоги науки и техники. Серия “Современные проблемы математики. Фундаментальные направления”. М.: ФИЗМАТЛИТ, 2003. Т. 90. С. 13.
- Löbling T.I., Haataja J.S., Synatschke C.V., Schacher F.H., Müller M., Hanisch A., Gröschel A.H., H Müller E. // ACS Nano. 2014. V. 8. P. 11330.
- Plimpton S.J. // Computat. Phys. 1995. V. 117. P. 1.
- Weeks J.D., Chandler D., Andersen H.C. // J. Chem. Phys. 1971. V. 54. P. 5237.
- Verlet L. // Phys. Rev. 1967. V. 159. P. 98.
- Smith J. // Compos. Sci. Technol. 2003. V. 63. P. 1599.
- Bishop M., Kalos M.H., Frisch H.L. // J. Chem. Phys. 1979. V. 70. P. 1299.
- Grest G.S., Kremer K. // Phys. Rev. A. 1986. V. 33. P. 3628.
- Cho J., Ogata Y. // J. Geom. 2017. V. 108. P. 463.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





