Study of the Effect of Nonselective Organic Solvent Nature on the Self-Organization of Amphiphilic Block Copolymers of D,L-Lactide and Ethylene Oxide in Aqueous Solution
- 作者: Kuznetsova E.V.1, Shirokova E.M.1, Puchkova Y.A.1, Yastremsky E.V.2, Chvalun S.N.1,3
- 
							隶属关系: 
							- National Research Center “Kurchatov Institute”
- Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences
 
- 期: 卷 65, 编号 1 (2023)
- 页面: 138-152
- 栏目: Articles
- URL: https://cardiosomatics.ru/2308-1147/article/view/674813
- DOI: https://doi.org/10.31857/S2308114723700279
- EDN: https://elibrary.ru/HSGETL
- ID: 674813
如何引用文章
详细
The self-organization of biocompatible amphiphilic block copolymers of D,L-lactide and ethylene oxide with various hydrophobic poly(D,L-lactide) block length in aqueous media has been investigated. It has been shown that the nature of nonselective organic solvent has a considerable effect on the size, size polydispersity, and morphology of micelles of a block copolymer with a long poly(D,L-lactide) block. To elucidate the dependence of properties of block copolymer micelles on the common organic solvent type (acetone, tetrahydrofuran, N,N-dimethylformamide, and acetonitrile) various parameters of the used solvents have been estimated, and correlation between the Flory–Huggins coefficient and the surface tension between the hydrophobic block and the nonselective organic solvent and the parameters of micellar structures has been found.
作者简介
E. Kuznetsova
National Research Center “Kurchatov Institute”
														Email: kuznetsova.kate992@gmail.com
				                					                																			                												                								123182, Moscow, Russia						
E. Shirokova
National Research Center “Kurchatov Institute”
														Email: kuznetsova.kate992@gmail.com
				                					                																			                												                								123182, Moscow, Russia						
Yu. Puchkova
National Research Center “Kurchatov Institute”
														Email: kuznetsova.kate992@gmail.com
				                					                																			                												                								123182, Moscow, Russia						
E. Yastremsky
Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences
														Email: kuznetsova.kate992@gmail.com
				                					                																			                												                								119333, Moscow, Russia						
S. Chvalun
National Research Center “Kurchatov Institute”; Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: kuznetsova.kate992@gmail.com
				                					                																			                												                								123182, Moscow, Russia; 123182, Moscow, Russia; 117393, Moscow, Russia						
参考
- Nagarajan R., Ganesh K. // J. Chem. Phys. 1989. V. 90. P. 5843.
- Mai Y., Eisenberg A. // Chem. Soc. Rev. 2012. V. 41. P. 5969; Jin B., Chen Y., Luo Y., Li X. // Chinese J. Chem. 2022. V. 41. P. 93; Choicair A., Eisenberg A. // Eur. Phys. J. E. 2003. V. 10. P. 37.
- Phan H., Minut R.I., McCrorie P., Vasey C., Larder R.R., Krumins E., Marlow M., Rahman R., Alexander C., Taresco V., Pearce A.K. // J. Polym. Sci., Polym. Chem. 2019. V. 57. P. 1801.
- Razuvaeva E.V., Kulebyakina A.I., Streltsov D.R., Bakirov A.V., Kamyshinsky R.A., Kuznetsov N.M., Chvalun S.N., Shtykova E.V. // Langmuir. 2018. V. 34. P. 15470.
- Kadina Y.A., Razuvaeva E.V., Streltsov D.R., Sedush N.G., Shtykova E.V., Kulebyakina A.I., Puchkov A.A., Volkov D.S., Nazarov A.A., Chvalun S.N. // Molecules. 2021. V. 26. P. 602.
- Desyatskova A.M., Kuznetsova E.V., Puchkova Y.A., Yastremsky E.V., Bakirov A.V., Dmitryakov P.V., Buzin A.I., Chvalun S.N. // Mendeleev Commun. 2023. V. 33. P. 86.
- Sedush N.G., Kadina Y.A., Razuvaeva E.V., Puchkov A.A., Shirokova E.M., Gomzyak V.I., Kalinin K.T., Kulebyakina A.I., Chvalun S.N. // Nanobiotechnol. Rep. 2021. V. 16. P. 421.
- Ali I., Kareem F., Rahim S., Perveen S., Ahmed S., Shah M.R., Malik M.I. // React. Funct. Polym. 2020. V. 150. P. 104553.
- Efimova A.A., Sybachin A.V., Chvalun S.N., Kulebyakina A.I., Kozlova E.V., Yaroslavov A.A. // Polymer Science B. 2015. V. 57. № 2. P. 140.
- Efimova A.A., Chvalun S.N., Kulebyakina A.I., Kozlova E.V., Yaroslavov A.A. // Polymer Science A. 2016. V. 58. № 2. P. 172.
- Alexis F., Pridgen E., Molnar L.K., Farokhzad O.C. // Mol. Pharm. 2008. V. 5. P. 505.
- Lin Z., Xi L., Chen S., Tao J., Wang Y., Chen X., Li P., Wang Z., Zheng Y. // Acta Pharm. Sin. B. 2021. V. 11. P. 1047.
- Crucho C.I.C., Barros M.T. // Mater. Sci. Eng. C. 2017. V. 80. P. 771.
- Yu Y., Zhang L., Eisenberg A. // Macromolecules. 1998. V. 31. P. 1144.
- Bhargava P., Zheng J.X., Li P., Quirk R.P., Harris F.W., Cheng S.Z.D. // Macromolecules. 2006. V. 39. P. 4880.
- Riley T., Stolnik S., Heald C.R., Xiong C.D., Garnett M.C., Illum L., Davis S.S., Purkiss S.C., Barlow R.J., Gellert P.R. // Langmuir. 2001. V. 17. P. 3168.
- Pijpers I.A.B., Meng F., van Hest J.C.M., Abdelmohsen L.K.E.A. // Polym. Chem. 2020. V. 11. P. 275.
- Simonutti R., Bertani D., Marotta R., Ferrario S., Manzone D., Mauri M., Gregori M., Orlando A., Masserini M. // Polymer. 2021. V. 218. P. 123511.
- Astafieva I., Zhong X.F., Eisenberg A. // Macromolecules. 1993. V. 26. P. 7339.
- Ahmed F., Discher D.E. // J. Control. Release. 2004. 96. P. 37.
- Tomaszewska E., Soliwoda K., Kadziola K., Tkacz-Szczesna B., Celichowski G., Cichomski M., Szmaja W., Grobelny J. J. Nanomater. 2013. V. 2013. P. 1.
- de Oliveira A.M., Jӓger E., Jӓger A., Stepánek P., Giacomeli F.C. // Colloids Surf. A. 2013. V. 436. P. 1092.
- Kuznetsova E.V., Kuznetsov N.M., Kalinin K.T., Lebedev-Stepanov P.V., Novikov A.A., Chvalun S.N. // Colloid J. 2022. V. 84. P. 704.
- Glova A.D., Falkovich S.G., Dmitrienko D.I., Lyulin A.V., Larin S.V., Nazarychev V.M., Karttunen M., Lyulin S.V. // Macromolecules. 2018. V. 51. P. 552.
- Zheng J.X., Xiong H., Chen W.Y., Lee K., Van Horn R.M., Quirk R.P., Lotz B., Thomas E.L., Shi A.-C., Cheng S.Z.D. // Macromolecules. 2006. V. 39. P. 641.
- Nagarajan R. // J. Colloid Interface Sci. 2015. V. 449. P. 416.
- Baker G.L., Vogel E.B., Smith III M.R. // Polym. Rev. 2008. V. 48. P. 64.
- Witschi C., Doelker E. // Eur. J. Pharmac. Biopharmac. 1997. V. 43. P. 215.
- Properties of solvents used in organic chemistry. http://murov.info/orgsolvents.htm (accessed on April 20, 2023).
- Subrahmanyam R., Gurikov P., Dieringer P., Sun M., Smirnova I. // Gels. 2015. V. 1. P. 291.
- Ovejero G., Pérez P., Romero M.D., Guzmán I., Diʹez E. // Eur. Polym. J. 2007. V. 43. P. 1444.
- Glova A.D., Melnikova S.D., Mercurieva A.A., Larin S.V., Lyulin S.V. // Polymers. 2019. V. 11. P. 2056.
- Garfield L.J., Petrie S.E. // J. Phys. Chem. 1964. V. 68. P. 1750.
- Chow T.S. // Macromolecules. 1980. V. 13. P. 362.
- Hansen solubility parameters. A user’s handbook. Second ed. /Ed. by C.M. Hansen. Boca Raton: CRC Press Taylor & Francis, 2007.
- Venkatram S., Kim C., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. P. 4188.
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					



