Chitosan-based Nanomedicine in the Management of Age-related Macular Degeneration: A Review


Cite item

Full Text

Abstract

Age-related macular degeneration (AMD) is a leading cause of permanent blindness globally. Due to the various obstacles, highly invasive intravitreal (IVT) injections are the prima-ry method used to deliver medications to the tissues of the posterior eye. An utmost patient-friendly topical ocular delivery approach has been extensively researched in recent years. Muco-adhesive compositions extend precorneal residence time while reducing precorneal clearance. They increase the likelihood of adhesion to corneal and conjunctival surfaces and, as a result, al-low for enhanced delivery to the posterior eye segment. Due to its remarkable mucoadhesive characteristics, chitosan (CS) has undergone the most extensive research of any mucoadhesive polymer. Drug delivery to the front and back of the eye is still difficult. The pharmaceutical in-dustry has shown greater interest in drug delivery systems (DDSs) based on nanotechnology (NT) in recent years, particularly those made from natural polymers like chitosan, alginate, etc. Be-cause of their incredible adaptability, higher biological effects, and favourable physicochemical properties, CS-oriented nanomaterials (NMs) are explored by researchers as prospective nanocar-riers. CS are the right substrates to develop pharmaceutical products, such as hydrogels, nanopar-ticles (NP), microparticles, and nanofibers, whether used alone or in composite form. CS-based nanocarriers deliver medicine, such as peptides, growth factors, vaccines, and genetic materials in regulated and targeted form. This review highlights current developments and challenges in chi-tosan-mediated nano therapies associated with AMD.

About the authors

Swarupananda Mukherjee

Department of Pharmaceutical Technology,, NSHM Knowledge Campus, Kolkata, Group of Institutions

Author for correspondence.
Email: info@benthamscience.net

Dipanjan Karati

Department of Pharmaceutical Technology, School of Pharmacy,, Techno India University

Email: info@benthamscience.net

Sudarshan Singh

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University

Email: info@benthamscience.net

Bhupendra Prajapati

Department of Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research,, Ganpat University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2(2): e106-16. doi: 10.1016/S2214-109X(13)70145-1 PMID: 25104651
  2. Holz FG, Schmitz-Valckenberg S, Fleckenstein M. Recent developments in the treatment of age-related macular degeneration. J Clin Invest 2014; 124(4): 1430-8. doi: 10.1172/JCI71029 PMID: 24691477
  3. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet 2018; 392(10153): 1147-59. doi: 10.1016/S0140-6736(18)31550-2 PMID: 30303083
  4. Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002; 8: 119-26. PMID: 11979237
  5. Carneiro , Andrade JP. Nutritional and lifestyle interventions for age-related macular degeneration: A review. Oxid Med Cell Longev 2017; 2017: 6469138. PMID: 28154734
  6. de Koning-Backus APM, Buitendijk GHS, Kiefte-de Jong JC, et al. Intake of vegetables, fruit, and fish is beneficial for age-related macular degeneration. Am J Ophthalmol 2019; 198: 70-9. doi: 10.1016/j.ajo.2018.09.036 PMID: 30312575
  7. Velilla S, García-Medina JJ, García-Layana A, et al. Smoking and age-related macular degeneration: Review and update. J Ophthalmol 2013; 2013: 1-11. doi: 10.1155/2013/895147 PMID: 24368940
  8. Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement system and age-related macular degeneration: Implications of gene-environment interaction for preventive and personalized medicine. BioMed Res Int 2018; 2018: 1-13. doi: 10.1155/2018/7532507 PMID: 30225264
  9. Merle H, Béral L, Rocher M, et al. Class II human leukocyte antigen (HLA) and susceptibility to polypoidal choroidal vasculopathy in afro-caribbean descent. Clin Ophthalmol 2022; 16: 1047-53. doi: 10.2147/OPTH.S337084 PMID: 35418742
  10. Korb CA, Elbaz H, Schuster AK, et al. Five-year cumulative incidence and progression of age-related macular degeneration: Results from the German population-based Gutenberg Health Study (GHS). Graefes Arch Clin Exp Ophthalmol 2022; 260(1): 55-64. doi: 10.1007/s00417-021-05312-y PMID: 34424371
  11. Flores R, Carneiro , Vieira M, Tenreiro S, Seabra MC. Age-Related macular degeneration: Pathophysiology, management, and future perspectives. IntJ ophthal 2021; 244(6): 495-511.
  12. Fernandes AR. Zielińska A, Sanchez-Lopez E, et al. Exudative versus nonexudative age-related macular degeneration: Physiopathology and treatment options. Int J Mol Sci 2022; 23(5): 2592. doi: 10.3390/ijms23052592 PMID: 35269743
  13. Kwon YH, Kim YA, Yoo YH. Loss of pigment epithelial cells is prevented by autophagy Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Elsevier 2017; pp. 105-17. doi: 10.1016/B978-0-12-805420-8.00003-2
  14. Yonekawa Y, Kim IK. Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb Perspect Med 2015; 5(1): a017178. doi: 10.1101/cshperspect.a017178 PMID: 25280900
  15. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81. doi: 10.1517/17425247.5.5.567 PMID: 18491982
  16. Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016; 6(6): 735-54. doi: 10.1007/s13346-016-0339-2 PMID: 27798766
  17. Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, et al. Memantine-loaded pegylated biodegradable nanoparticles for the treatment of glaucoma. Small 2018; 14(2) doi: 10.1002/smll.201701808
  18. Mahaling B, Katti DS. Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. Int J Pharm 2016; 501(1-2): 1-9. doi: 10.1016/j.ijpharm.2016.01.053 PMID: 26821059
  19. Okabe K, Kimura H, Okabe J, et al. Effect of benzalkonium chloride on transscleral drug delivery. Invest Ophthalmol Vis Sci 2005; 46(2): 703-8. doi: 10.1167/iovs.03-0934 PMID: 15671302
  20. Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 2008; 16(1): 107-14. doi: 10.1038/sj.mt.6300324
  21. Lindsey JD, Crowston JG, Tran A, Morris C, Weinreb RN. Direct matrix metalloproteinase enhancement of transscleral permeability. Invest Ophthalmol Vis Sci 2007; 48(2): 752-5. doi: 10.1167/iovs.06-0334 PMID: 17251474
  22. Aihara M, Lindsey JD, Weinreb RN. Enhanced FGF-2 movement through human sclera after exposure to latanoprost. Invest Ophthalmol Vis Sci 2001; 42(11): 2554-9. PMID: 11581197
  23. Burgalassi S, Chetoni P, Monti D, Saettone MF. Cytotoxicity of potential ocular permeation enhancers evaluated on rabbit and human corneal epithelial cell lines. Toxicol Lett 2001; 122(1): 1-8. doi: 10.1016/S0378-4274(01)00261-2 PMID: 11397552
  24. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16. doi: 10.1146/annurev-bioeng-071811-150124 PMID: 22524388
  25. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9(8): 615-27. doi: 10.1038/nrd2591 PMID: 20616808
  26. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95. doi: 10.1016/j.jconrel.2010.01.036
  27. Iwase T, Fu J, Yoshida T, Muramatsu D, Miki A, Hashida N, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J control rel offJ Control Rel Soc 2013; 172(3): 625-33.
  28. Fu J, Sun F, Liu W, et al. Subconjunctival delivery of dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm 2016; 13(9): 2987-95. doi: 10.1021/acs.molpharmaceut.6b00343 PMID: 27336794
  29. Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Bhanuprakash Reddy G, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale 2018; 10(35): 16485-98. doi: 10.1039/C8NR00058A PMID: 29897081
  30. Tyagi P, Barros M, Stansbury JW, Kompella UB. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 2013; 10(8): 2858-67. doi: 10.1021/mp300716t PMID: 23734705
  31. Inokuchi Y, Hironaka K, Fujisawa T, et al. Physicochemical properties affecting retinal drug/coumarin-6 delivery from nanocarrier systems via eyedrop administration. Invest Ophthalmol Vis Sci 2010; 51(6): 3162-70. doi: 10.1167/iovs.09-4697 PMID: 20053972
  32. Mahaling B, Katti DS. Physicochemical properties of core–shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomedicine 2016; 12(7): 2149-60. doi: 10.1016/j.nano.2016.05.017 PMID: 27288669
  33. Farshchi E, Pirsa S, Roufegarinejad L, Alizadeh M, Rezazad M. Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydr Polym 2019; 216: 189-96. doi: 10.1016/j.carbpol.2019.03.094 PMID: 31047056
  34. Kolangare IM, Isloor AM, Karim ZA, et al. Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environ Chem Lett 2019; 17(1): 581-7. doi: 10.1007/s10311-018-0799-3
  35. Pathak N, Singh P, Singh PK, et al. Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front Nutr 2022; 9: 963413. doi: 10.3389/fnut.2022.963413 PMID: 35911098
  36. Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environ Chem Lett 2020; 18(5): 1569-80. doi: 10.1007/s10311-020-01021-w PMID: 32837482
  37. Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 2019; 17(4): 1667-92. doi: 10.1007/s10311-019-00904-x
  38. Karati D. A concise review on bio-responsive polymers in targeted drug delivery system. Polym Bull 2022; 1-23.
  39. Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2): 022001. doi: 10.1088/1748-6041/4/2/022001 PMID: 19261988
  40. Nilsson D. Eye evolution and its functional basis. Vis Neurosci 2013; 30(1-2): 5-20. doi: 10.1017/S0952523813000035 PMID: 23578808
  41. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: A review. Open Ophthalmol J 2010; 4(1): 52-9. doi: 10.2174/1874364101004010052 PMID: 21293732
  42. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med 2008; 358(24): 2606-17. doi: 10.1056/NEJMra0801537 PMID: 18550876
  43. Carrasco-León A, Amundarain A, Gómez-Echarte N, Prósper F, Agirre X. The Role of lncRNAs in the pathobiology and clinical behavior of multiple myeloma. Cancers 2021; 13(8): 1976. doi: 10.3390/cancers13081976 PMID: 33923983
  44. Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 2020; 127(5): 616-36. doi: 10.1016/j.ophtha.2019.11.004 PMID: 31864668
  45. Gayton J. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol 2009; 3: 405-12. doi: 10.2147/OPTH.S5555 PMID: 19688028
  46. Watt K, Swarbrick HA. Microbial keratitis in overnight orthokeratology: Review of the first 50 cases. Eye Contact Lens 2005; 31(5): 201-8. doi: 10.1097/01.icl.0000179705.23313.7e PMID: 16163011
  47. Azari AA, Barney NP. Conjunctivitis. JAMA 2013; 310(16): 1721-9. doi: 10.1001/jama.2013.280318 PMID: 24150468
  48. Toh TY, Morton J, Coxon J, Elder MJ. Medical treatment of cataract. Clin Exp Ophthalmol 2007; 35(7): 664-71. doi: 10.1111/j.1442-9071.2007.01559.x PMID: 17894689
  49. McCluskey PJ, Towler HM, Lightman S. Regular review: Management of chronic uveitis. BMJ 2000; 320(7234): 555-8. doi: 10.1136/bmj.320.7234.555 PMID: 10688564
  50. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014; 311(18): 1901-11. doi: 10.1001/jama.2014.3192 PMID: 24825645
  51. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet 2012; 379(9827): 1728-38. doi: 10.1016/S0140-6736(12)60282-7 PMID: 22559899
  52. Katz J, d’Albis MA, Boisgontier J, et al. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism. Acta Psychiatr Scand 2016; 134(1): 31-9. doi: 10.1111/acps.12579 PMID: 27105136
  53. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: Pathophysiology, screening, and novel therapies. Diabetes Care 2003; 26(9): 2653-64. doi: 10.2337/diacare.26.9.2653 PMID: 12941734
  54. Karati D, Kumar Shaw T. Pharmacological importance of Bacopa monnieri on Neurological disease (Alzheimer’s Disease) and Diabetic neuropathy: A concise review. Res J Pharm Technol 2022; 15(8): 3790-5. doi: 10.52711/0974-360X.2022.00636
  55. Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db Mice. Diabetes 2018; 67(9): 1867-79. doi: 10.2337/db18-0158 PMID: 29712667
  56. Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers 2016; 2(1): 16012. doi: 10.1038/nrdp.2016.12 PMID: 27159554
  57. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis 2015; 2(1): 17. doi: 10.1186/s40662-015-0026-2 PMID: 26605370
  58. Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35(3): 556-64. doi: 10.2337/dc11-1909 PMID: 22301125
  59. Congdon N, Zheng Y, He M. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 2012; 60(5): 428-31. doi: 10.4103/0301-4738.100542 PMID: 22944754
  60. Kernt M, Kampik A. Endophthalmitis: Pathogenesis, clinical presentation, management, and perspectives. Clin Ophthalmol 2010; 4: 121-35. doi: 10.2147/OPTH.S6461 PMID: 20390032
  61. Beck RW, Cleary PA, Anderson MM Jr, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N Engl J Med 1992; 326(9): 581-8. doi: 10.1056/NEJM199202273260901 PMID: 1734247
  62. Borchert M, Liu GT, Pineles S, Waldman AT. Pediatric optic neuritis: What is new. J neuro-ophthal offic J North Am Neuro-Ophthalmol Soc 2017; 37(Suppl 1): S14-22.
  63. Ghaffarieh A, Levin LA. Optic nerve disease and axon pathophysiology. Int Rev Neurobiol 2012; 105: 1-17. doi: 10.1016/B978-0-12-398309-1.00002-0 PMID: 23206593
  64. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368(9549): 1795-809. doi: 10.1016/S0140-6736(06)69740-7 PMID: 17113430
  65. Dimaras H, Kimani K, Dimba EAO, et al. Retinoblastoma. Lancet 2012; 379(9824): 1436-46. doi: 10.1016/S0140-6736(11)61137-9 PMID: 22414599
  66. Shah PK, Naik AS, Jyothi S. Retinoblastoma: A comprehensive review. Keral J Ophthal 2016; 28(3): 164-70. doi: 10.4103/kjo.kjo_11_17
  67. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37: 101799. doi: 10.1016/j.redox.2020.101799 PMID: 33248932
  68. Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. J Photochem Photobiol B 2018; 183: 133-6. doi: 10.1016/j.jphotobiol.2018.04.033 PMID: 29704861
  69. Bruning U, Morales-Rodriguez F, Kalucka J, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab 2018; 28(6): 866-880.e15. doi: 10.1016/j.cmet.2018.07.019 PMID: 30146486
  70. Schoors S, Bruning U, Missiaen R, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 2015; 520(7546): 192-7. doi: 10.1038/nature14362 PMID: 25830893
  71. Huang H, Vandekeere S, Kalucka J, et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 2017; 36(16): 2334-52. doi: 10.15252/embj.201695518 PMID: 28659375
  72. Dong A, Xie B, Shen J, et al. Oxidative stress promotes ocular neovascularization. J Cell Physiol 2009; 219(3): 544-52. doi: 10.1002/jcp.21698 PMID: 19142872
  73. de Jong PTVM. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-85. doi: 10.1056/NEJMra062326 PMID: 17021323
  74. Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog Retin Eye Res 2010; 29(2): 95-112. doi: 10.1016/j.preteyeres.2009.11.003 PMID: 19961953
  75. Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration. Cell Mol Life Sci 2021; 78(10): 4487-505. doi: 10.1007/s00018-021-03796-9 PMID: 33751148
  76. Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases. Front Immunol 2019; 10: 1007. doi: 10.3389/fimmu.2019.01007 PMID: 31156618
  77. Hadziahmetovic M, Malek G. Age-related macular degeneration revisited: From pathology and cellular stress to potential therapies. Front Cell Dev Biol 2021; 8: 612812. doi: 10.3389/fcell.2020.612812 PMID: 33569380
  78. Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today 2019; 24(8): 1679-84. doi: 10.1016/j.drudis.2019.05.035 PMID: 31175955
  79. Skelly A, Bezlyak V, Liew G, Kap E, Sagkriotis A. Treat and extend treatment interval patterns with anti-vegf therapy in namd patients. In: Vision. 2019; 3.(3) doi: 10.3390/vision3030041
  80. Radhakrishnan K, Sonali N, Moreno M, et al. Protein delivery to the back of the eye: Barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today 2017; 22(2): 416-23. doi: 10.1016/j.drudis.2016.10.015 PMID: 27818255
  81. Battaglia L, Gallarate M, Serpe L, Foglietta F, Muntoni E, del Pozo Rodriguez A, et al. Ocular delivery of solid lipid nanoparticlesLipid Nanocarriers for Drug Targeting. Elsevier 2018; pp. 269-312. doi: 10.1016/B978-0-12-813687-4.00007-4
  82. Pikuleva IA, Curcio CA. Cholesterol in the retina: The best is yet to come. Prog Retin Eye Res 2014; 41: 64-89. doi: 10.1016/j.preteyeres.2014.03.002 PMID: 24704580
  83. Peyman GA, Ganiban GJ. Delivery systems for intraocular routes. Adv Drug Deliv Rev 1995; 16(1): 107-23. doi: 10.1016/0169-409X(95)00018-3
  84. Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88. doi: 10.1517/17425247.4.4.371 PMID: 17683251
  85. Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: Challenges and opportunities. Expert Opin Biol Ther 2003; 3(1): 45-56. doi: 10.1517/14712598.3.1.45 PMID: 12718730
  86. Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021; 63: 102487. doi: 10.1016/j.jddst.2021.102487
  87. Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021; 11(1): 173. doi: 10.3390/nano11010173 PMID: 33445545
  88. Jain A, Prajapati SK, Kumari A, Mody N, Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J Drug Deliv Sci Technol 2020; 57: 101643. doi: 10.1016/j.jddst.2020.101643
  89. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 2019; 20: 100397. doi: 10.1016/j.nanoso.2019.100397
  90. Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010; 5(8): 1237-60. doi: 10.2217/nnm.10.107 PMID: 21039200
  91. Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52. doi: 10.1002/jps.23773 PMID: 24338748
  92. Ojea-Jiménez I, Comenge J, García-Fernández L, Megson Z, Casals E, Puntes V. Engineered inorganic nanoparticles for drug delivery applications. Curr Drug Metab 2013; 14(5): 518-30. doi: 10.2174/13892002113149990008 PMID: 23116108
  93. Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368. doi: 10.3390/ijms222212368 PMID: 34830247
  94. Han X, Wang C, Liu Z. Red blood cells as smart delivery systems. Bioconjug Chem 2018; 29(4): 852-60. doi: 10.1021/acs.bioconjchem.7b00758 PMID: 29298380
  95. Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, et al. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnol Rev 2021; 10(1): 1662-739. doi: 10.1515/ntrev-2021-0099
  96. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm 2011; 8(6): 2101-41. doi: 10.1021/mp200394t PMID: 21974749
  97. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 2020; 36: 100609. doi: 10.1016/j.fbio.2020.100609
  98. Eze FN, Jayeoye TJ, Singh S. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 2022; 366: 130574. doi: 10.1016/j.foodchem.2021.130574 PMID: 34303209
  99. Mohite P, Shah SR, Singh S, et al. Chitosan and chito-oligosaccharide: A versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11: 1190879. doi: 10.3389/fbioe.2023.1190879 PMID: 37274159
  100. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP. Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 2021; 182: 1015-25. doi: 10.1016/j.ijbiomac.2021.04.027 PMID: 33839180
  101. Kumar A, Yadav S, Pramanik J, et al. Chitosan-based composites: Development and perspective in food preservation and biomedical applications. Polymers 2023; 15(15): 3150. doi: 10.3390/polym15153150 PMID: 37571044
  102. Mohite P, Rahayu P, Munde S, et al. Chitosan-based hydrogel in the management of dermal infections: A review. Gels 2023; 9(7): 594. doi: 10.3390/gels9070594 PMID: 37504473
  103. Tanito M, Kaidzu S, Takai Y, Ohira A. Correlation between systemic oxidative stress and intraocular pressure level. PLoS One 2015; 10(7): e0133582. doi: 10.1371/journal.pone.0133582 PMID: 26186651
  104. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7(3): 281-91. doi: 10.1016/j.apsb.2016.09.001 PMID: 28540165
  105. Mann BK, Stirland DL, Lee HK, Wirostko BM. Ocular translational science: A review of development steps and paths. Adv Drug Deliv Rev 2018; 126: 195-203. doi: 10.1016/j.addr.2018.01.012 PMID: 29355668
  106. Chang E. Relevance of nanotechnology to retinal disease. Retin Physician 2017; 14: 44-6.
  107. Madni A, Rahem MA, Tahir N, et al. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm 2017; 530(1-2): 326-45. doi: 10.1016/j.ijpharm.2017.07.065 PMID: 28755994
  108. Formica ML, Real JP, Allemandi D, Palma YS. Nano technological drug release approaches for the treatment of eye diseases: Myth, reality or challenge. J pharmacol clin res 2018; 5(1): 5-7. doi: 10.19080/JPCR.2018.05.555654
  109. Bucolo C, Drago F, Salomone S. Ocular drug delivery: A clue from nanotechnology. Front Pharmacol 2012; 3: 188. doi: 10.3389/fphar.2012.00188 PMID: 23125835
  110. Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease. Retina Today 2010; 5(4): 48-51.
  111. Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts 2016; 6(1): 49-67. doi: 10.15171/bi.2016.07 PMID: 27340624
  112. Sahoo S, Sahoo R, Nayak P. Mucoadhesive nanopolymers for posterior segment drug delivery. Retina Today 2011; 3: 60-3.
  113. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010; 29(6): 596-609. doi: 10.1016/j.preteyeres.2010.08.002 PMID: 20826225
  114. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60. doi: 10.1038/nrd1632 PMID: 15688077
  115. Arroyo CM, Quinteros D, Cózar-Bernal MJ, Palma SD, Rabasco AM, González-Rodríguez ML. Ophthalmic administration of a 10-fold-lower dose of conventional nanoliposome formulations caused levels of intraocular pressure similar to those induced by marketed eye drops. Europ J pharmac sci 2018; 111: 186-94.
  116. Shimazaki H, Hironaka K, Fujisawa T, et al. Edaravone-loaded liposome eyedrops protect against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci 2011; 52(10): 7289-97. doi: 10.1167/iovs.11-7983 PMID: 21849425
  117. Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol 2017; 101(12): 1731-8. doi: 10.1136/bjophthalmol-2016-310044 PMID: 28986343
  118. Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91. doi: 10.1016/j.ijbiomac.2019.10.256 PMID: 31759018
  119. Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55. doi: 10.1039/D0RA04971A PMID: 35516960
  120. Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina-Martínez IT, Herrero-Vanrell R. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2016; 6(6): 686-707. doi: 10.1007/s13346-016-0336-5 PMID: 27766598
  121. Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 2020; 13(4): 246-54. doi: 10.2174/1872211314666191224115211 PMID: 31884933
  122. Chaiyasan W, Srinivas SP, Tiyaboonchai W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 2015; 21: 1224-34. PMID: 26604662
  123. Fernandes AR, Vidal LB, Sánchez-López E, et al. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022; 623: 121938. doi: 10.1016/j.ijpharm.2022.121938 PMID: 35728716
  124. Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In vitro and ex vivo studies. Nanomedicine 2012; 8(6): 1034-41. doi: 10.1016/j.nano.2011.10.015 PMID: 22115598
  125. Araújo J, Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 2010; 393(1-2): 168-76. doi: 10.1016/j.ijpharm.2010.03.034 PMID: 20362042
  126. Sánchez-López E, Esteruelas G, Ortiz A, et al. Dexibuprofen biodegradable nanoparticles: One step closer towards a better ocular interaction study. Nanomaterials 2020; 10(4): 720. doi: 10.3390/nano10040720 PMID: 32290252
  127. Sánchez-López E, Egea MA, Cano A, et al. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces 2016; 145: 241-50. doi: 10.1016/j.colsurfb.2016.04.054 PMID: 27187188
  128. Sharma P, Mittal S. Nanotechnology: Revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin Drug Deliv 2021; 18(8): 1131-49. doi: 10.1080/17425247.2021.1888925 PMID: 33691548
  129. Suri R, Nag TC, Mehra N, et al. Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023; 82: 104369. doi: 10.1016/j.jddst.2023.104369
  130. Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm 2016; 13(9): 2923-40. doi: 10.1021/acs.molpharmaceut.6b00335 PMID: 27286558
  131. Zhao R, Li J, Wang J, Yin Z, Zhu Y, Liu W. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery. AAPS PharmSciTech 2017; 18(4): 997-1008. doi: 10.1208/s12249-016-0669-x PMID: 28101726
  132. Katiyar S, Pandit J, Mondal RS, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 2014; 102: 117-24. doi: 10.1016/j.carbpol.2013.10.079 PMID: 24507263
  133. Fathalla ZMA, Khaled KA, Hussein AK, Alany RG, Vangala A. Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 2016; 42(4): 514-24. doi: 10.3109/03639045.2015.1081236 PMID: 26407208
  134. Wassmer S, Rafat M, Fong WG, Baker AN, Tsilfidis C. Chitosan microparticles for delivery of proteins to the retina. Acta Biomater 2013; 9(8): 7855-64. doi: 10.1016/j.actbio.2013.04.025 PMID: 23623991
  135. Xu X, Weng Y, Xu L, Chen H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol 2013; 60: 272-6. doi: 10.1016/j.ijbiomac.2013.05.034 PMID: 23748006
  136. Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: Optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol 2017; 45(7): 1397-407. doi: 10.1080/21691401.2016.1243545 PMID: 27855494
  137. Mateescu MA, Ispas-Szabo P, Assaad E. Chitosan and its derivatives as self-assembled systems for drug deliveryControlled Drug Delivery 1st. Cambridge: Woodhead Publishing Limited 2015; pp. 86-119.
  138. Supper S, Anton N, Boisclair J, Seidel N, Riemenschnitter M, Curdy C, et al. Chitosan/glucose 1-phosphate as new stable in situ forming depot system for controlled drug delivery. Eur J Pharm Biopharm 2014; 88(2): 361-73.
  139. Szymańska E, Winnicka K. Stability of chitosan: A challenge for pharmaceutical and biomedical applications. Mar Drugs 2015; 13(4): 1819-46. doi: 10.3390/md13041819 PMID: 25837983
  140. Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. The Open Drug Deliv J 2008; 2(1)
  141. Hurler J, Škalko-Basnet N. Potentials of chitosan-based delivery systems in wound therapy: Bioadhesion study. J Funct Biomater 2012; 3(1): 37-48. doi: 10.3390/jfb3010037 PMID: 24956514
  142. Cheng YH, Tsai TH, Jhan YY, et al. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym 2016; 144: 390-9. doi: 10.1016/j.carbpol.2016.02.080 PMID: 27083831
  143. Popa L, Ghica MV, Dinu-Pîrvu CE, Irimia T. Chitosan: A good candidate for sustained release ocular drug delivery systems. Myriad Functionalities in Science and Technology. Intechopen 2018. doi: 10.5772/intechopen.76039
  144. Chen X, Li X, Zhou Y, et al. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: Preparation, characterization, and in vivo evaluation. J Biomater Appl 2012; 27(4): 391-402. doi: 10.1177/0885328211406563 PMID: 21750179
  145. Jain D, Kumar V, Singh S, Mullertz A, Bar-Shalom D. Newer trends in in situ gelling systems for controlled ocular drug delivery. J Anal Pharm Res 2016; 2(3): 00022. doi: 10.15406/japlr.2016.02.00022
  146. Wang K, Mitra RN, Zheng M, Han Z. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment. J Biomed Mater Res A 2018; 106(11): 2795-804. doi: 10.1002/jbm.a.36450 PMID: 29752862
  147. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307. doi: 10.1016/j.progpolymsci.2013.07.005
  148. Nishiyama N, Iriyama A, Jang WD, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 2005; 4(12): 934-41. doi: 10.1038/nmat1524 PMID: 16299510
  149. Yavuz B, Pehlivan SB. Vural İ Ünlü N. In Vitro/In Vivo evaluation of dexamethasone—pamam dendrimer complexes for retinal drug delivery. J Pharm Sci 2015; 104(11): 3814-23. doi: 10.1002/jps.24588 PMID: 26227825
  150. Lancina MG III, Wang J, Williamson GS, Yang H. Dentimol as a dendrimeric timolol analogue for glaucoma therapy: Synthesis and preliminary efficacy and safety assessment. Mol Pharm 2018; 15(7): 2883-9. doi: 10.1021/acs.molpharmaceut.8b00401 PMID: 29767982
  151. Vyas S, Singh R, Jain S, et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 2005; 296(1-2): 80-6. doi: 10.1016/j.ijpharm.2005.02.016 PMID: 15885458
  152. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36. doi: 10.1016/j.jconrel.2014.04.015
  153. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 2011; 100(5): 1833-46. doi: 10.1002/jps.22422 PMID: 21246556
  154. Ge Y, Zhang A, Sun R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin Drug Deliv 2020; 17(4): 603-19. doi: 10.1080/17425247.2020.1735348 PMID: 32105151
  155. Laradji AM, Kolesnikov AV, Karakoçak BB, Kefalov VJ, Ravi N. Redox-responsive hyaluronic acid-based nanogels for the topical delivery of the visual chromophore to retinal photoreceptors. ACS Omega 2021; 6(9): 6172-84. doi: 10.1021/acsomega.0c05535 PMID: 33718708
  156. Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16. doi: 10.1007/s11095-006-9132-0 PMID: 17109211
  157. Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(5): 422-37. doi: 10.1002/wnan.1272 PMID: 24888969
  158. Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharm 2018; 15(2): 571-84. doi: 10.1021/acs.molpharmaceut.7b00939 PMID: 29313693
  159. Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: The rotterdam study. Arch Ophthalmol 1998; 116(5): 653-8. doi: 10.1001/archopht.116.5.653
  160. Zhang P, Liu X, Hu W, Bai Y, Zhang L. Preparation and evaluation of naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym 2016; 149: 224-30. doi: 10.1016/j.carbpol.2016.04.115 PMID: 27261746
  161. da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery In vitro tests. Int J Biol Macromol 2016; 84: 112-20. doi: 10.1016/j.ijbiomac.2015.11.070 PMID: 26645149
  162. Lu Y, Zhou N, Huang X, et al. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int J Ophthalmol 2014; 7(1): 1-7. PMID: 24634856
  163. Selvaraj K, Kuppusamy G, Krishnamurthy J, Mahalingam R, Singh SK, Gulati M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev Technol 2019; 17(4): 178-90. doi: 10.1089/adt.2018.898 PMID: 30835139
  164. Cheng T, Li J, Cheng Y, Zhang X, Qu Y. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res 2019; 188: 107805. doi: 10.1016/j.exer.2019.107805 PMID: 31526807
  165. Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. Two‐dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 2015; 25(32): 5086-99. doi: 10.1002/adfm.201500891
  166. Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017; 9(4): 53. doi: 10.3390/pharmaceutics9040053 PMID: 29156634
  167. Opanasopit P, Aumklad P, Kowapradit J, et al. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm Dev Technol 2007; 12(5): 447-55. doi: 10.1080/10837450701555901 PMID: 17963144
  168. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 2019; 14: 4723-39. doi: 10.2147/IJN.S207644 PMID: 31308655
  169. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 2005; 26(32): 6343-56. doi: 10.1016/j.biomaterials.2005.03.036 PMID: 15913769
  170. Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 2007; 129(11): 3333-8. doi: 10.1021/ja068158s PMID: 17319667
  171. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: A promising system in novel drug delivery. Chem Pharm Bull 2010; 58(11): 1423-30. doi: 10.1248/cpb.58.1423 PMID: 21048331
  172. Li Y, Raza F, Liu Y, et al. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279: 121202. doi: 10.1016/j.biomaterials.2021.121202 PMID: 34749072
  173. Prow TW, Bhutto I, Kim SY, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 2008; 4(4): 340-9. doi: 10.1016/j.nano.2008.06.003 PMID: 18640079
  174. Paliwal R, Paliwal SR, Sulakhiya K, Kurmi BD, Kenwat R, Mamgain A. Chitosan-based nanocarriers for ophthalmic applicationsPolysaccharide Carriers for Drug Delivery. Elsevier 2019; pp. 79-104. doi: 10.1016/B978-0-08-102553-6.00004-0
  175. Fernandez MJA, Rey MBS, De la Fuente Freire M, Pena AIV. Nanoparticles of chitosan and hyaluronan for the administration of active molecules. US20110142890A1, 2011.
  176. Desai Tejal A, Chirra Hariharasudhan D. Univ california, assignee. bioactive agent delivery devices and methods of making and using the same. EP2856259B1, 2013.
  177. Hebert R. Water-soluble indole-3-propionic acid. US20040029830 A1, 2004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers