Nanotechnological Carriers in the Treatment of Cancer: A Review


Cite item

Full Text

Abstract

There is an urgent need of advanced techniques/technologies for the treatment of can-cer as it is becoming the major cause of mortality and morbidity worldwide. The improvement of the cancer drug delivery system has been made possible by the formation of novel nanomaterials and nanocarriers. The nanocarriers prevent rapid degradation of the drug and thereby deliver the drug to a specific tumor site at therapeutic concentrations, meanwhile reducing the adverse/side effects by avoiding the delivery of the drug to normal sites. The antitumor activity can be en-hanced by increasing the tumoral uptake of nanocarriers. By delivering the nanocarriers either by active or passive targeting, the tumoral uptake can be increased. The pharmacokinetics, pharma-codynamics, and safety profile of the drug are determined by structural and physical factors like size, charge, shape, and other surface characteristics, hence the design of the nanoparticles is an important factor. In the present review, the mechanism of cellular targeting, along with the differ-ent nanoparticles used in cancer therapy is discussed. Nanotechnology have gained huge ground due to improved diagnosis and treatment additionally saving the time and resources, which makes this technology to get more landscape for researchers/ oncologists.

About the authors

Darsh Gautam

Department of Pharmaceutical Sciences,, Himachal Institute of Pharmaceutical Education & Research

Author for correspondence.
Email: info@benthamscience.net

Poonam Talwan

Department of Pharmaceutical Sciences,, Himachal Institute of Pharmaceutical Education & Research

Email: info@benthamscience.net

Sanjay Kumar

Department of Pharmacognosy, Laureate Institute of Pharmacy

Email: info@benthamscience.net

Gaurav Joshi

Department of Pharmacy Practice, University Institute of Pharma Sciences,, Chandigarh University

Email: info@benthamscience.net

Ranjit Singh

Vice Chancellor, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University

Email: info@benthamscience.net

References

  1. Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol 2012; 13(8): 790-801. doi: 10.1016/S1470-2045(12)70211-5 PMID: 22658655
  2. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92. PMID: 2946403
  3. Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 2010; 1(2): 323-34. doi: 10.4155/tde.10.13 PMID: 22816135
  4. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750-63. doi: 10.1038/nrc903 PMID: 12360278
  5. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41(1): 189-207. doi: 10.1016/S0065-2571(00)00013-3 PMID: 11384745
  6. Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000; 85(3): 217-29. doi: 10.1016/S0163-7258(99)00073-X PMID: 10739876
  7. Park W, Heo YJ, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res 2018; 22(1): 24. doi: 10.1186/s40824-018-0133-y PMID: 30275967
  8. Kroemer G, Zitvogel L. The breakthrough of the microbiota. Nat Rev Immunol 2018; 18(2): 87-8. doi: 10.1038/nri.2018.4 PMID: 29379189
  9. Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol 2018; 19(S1) (Suppl. 1): 31-9. doi: 10.1007/s40257-018-0384-3 PMID: 30374901
  10. Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Proc Synth 2020; 9(1): 304-39. doi: 10.1515/gps-2020-0031
  11. Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. C R Phys 2011; 12(7): 620-36. doi: 10.1016/j.crhy.2011.06.001
  12. Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110. doi: 10.1021/cr068445e PMID: 18543879
  13. Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 2012; 57(4): 724-803. doi: 10.1016/j.pmatsci.2011.08.003
  14. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 2016; 6(1): 26332. doi: 10.1038/srep26332 PMID: 27189842
  15. Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008; 97(9): 3518-90. doi: 10.1002/jps.21270 PMID: 18200527
  16. Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts 2013; 3(4): 149-62. doi: 10.5681/bi.2013.036 PMID: 24455478
  17. Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2021; 268: 120562. doi: 10.1016/j.biomaterials.2020.120562 PMID: 33278682
  18. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5. doi: 10.1016/j.addr.2010.03.011 PMID: 20304019
  19. Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 2002; 200(6): 581-97. doi: 10.1046/j.1469-7580.2002.00066.x PMID: 12162726
  20. Jain RK. The next frontier of molecular medicine: Delivery of therapeutics. Nat Med 1998; 4(6): 655-7. doi: 10.1038/nm0698-655 PMID: 9623964
  21. Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci 1998; 95(8): 4607-12. doi: 10.1073/pnas.95.8.4607 PMID: 9539785
  22. Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 2007; 9(1): 229-56. doi: 10.1146/annurev.bioeng.9.060906.151850 PMID: 17459001
  23. Padera TP, Stoll BR, Tooredman JB, Capen D, Tomaso E, Jain RK. Cancer cells compress intratumour vessels. Nature 2004; 427(6976): 695. doi: 10.1038/427695a PMID: 14973470
  24. Mukwaya G, Forssen EA, Schmidt P, Ross M. DaunoXome® (Liposomal Daunorubicin) for first-line treatment of advanced, HIV-related Kaposi’s Sarcoma Long Circulating Liposomes: Old Drugs, New Therapeutics. Berlin, Heidelberg: Springer 1998; pp. 147-63. doi: 10.1007/978-3-662-22115-0_10
  25. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60. doi: 10.1038/nnano.2007.387 PMID: 18654426
  26. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem Soc Rev 2012; 41(7): 2971-3010. doi: 10.1039/c2cs15344k PMID: 22388185
  27. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26. doi: 10.1016/j.addr.2008.08.005 PMID: 18840489
  28. Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol 2010; 27(7): 215-31. doi: 10.3109/09687688.2010.510804 PMID: 20939772
  29. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman C, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11: 2871-90. doi: 10.2147/DDDT.S142337 PMID: 29033548
  30. Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 2016; 142(11): 2217-29. doi: 10.1007/s00432-016-2179-3 PMID: 27209529
  31. Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res 2018; 137: 115-70. doi: 10.1016/bs.acr.2017.11.003 PMID: 29405974
  32. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 2016; 60: 569-78. doi: 10.1016/j.msec.2015.11.067 PMID: 26706565
  33. Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5. doi: 10.1016/j.colsurfb.2013.05.020 PMID: 23792547
  34. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61. doi: 10.1039/c2cs15327k PMID: 22334259
  35. Andronescu E, Grumezescu AM. Nanostructures for drug delivery. Elsevier 2017. Available from: https://www.elsevier.com/books/nanostructuresfor-drug-delivery/andronescu/978-0-323-46143-6
  36. Almoustafa HA, Alshawsh MA, Al-Suede FSR, Alshehade SA, Abdul Majid AMS, Chik Z. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers 2023; 15(2): 284. doi: 10.3390/polym15020284 PMID: 36679166
  37. Dadras P, Atyabi F, Irani S, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97: 47-54. doi: 10.1016/j.ejps.2016.11.005 PMID: 27825919
  38. Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 2015; 8(10): 19670-81. PMID: 26770631
  39. Liu X, Li J, Huang L, et al. Preparation and evaluation of MPEG-PCL polymeric nanoparticles against gastric cancer. J Wuhan Univ TechnolMat Sci Ed 2020; 35(6): 1162-8. doi: 10.1007/s11595-020-2368-4
  40. Abdellatif AAH, Ali AT, Bouazzaoui A, Alsharidah M, Al Rugaie O, Tolba NS. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol Rev 2022; 11(1): 987-1004. doi: 10.1515/ntrev-2022-0058
  41. Bhattacharyya J, Bellucci JJ, Weitzhandler I, et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat Commun 2015; 6(1): 7939. doi: 10.1038/ncomms8939 PMID: 26239362
  42. Bernardi A, Braganhol E, Jäger E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 2009; 281(1): 53-63. doi: 10.1016/j.canlet.2009.02.018 PMID: 19286307
  43. Ma P, Dong X, Swadley CL, et al. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 2009; 5(2): 151-61. doi: 10.1166/jbn.2009.1021 PMID: 20055093
  44. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion:An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7. doi: 10.1007/s13205-014-0214-0
  45. Du M, Yang Z, Lu W, et al. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul 2020; 37(6): 403-12. doi: 10.1080/02652048.2020.1767224 PMID: 32401077
  46. Dianzani C, Monge C, Miglio G, et al. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment. Cancers 2020; 12(5): 1198. doi: 10.3390/cancers12051198 PMID: 32397484
  47. Kurtz SL, Lawson LB. Nanoemulsions enhance in vitro transpapillary diffusion of model fluorescent dye nile red. Sci Rep 2019; 9(1): 11810. doi: 10.1038/s41598-019-48144-x PMID: 31413320
  48. Khan I, Bahuguna A, Kumar P, Bajpai VK, Kang SC. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci Rep 2018; 8(1): 144. doi: 10.1038/s41598-017-18644-9 PMID: 29317755
  49. Alkhatib MH, Bawadud RS, Gashlan HM. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells. Sci Rep 2020; 10(1): 18124. doi: 10.1038/s41598-020-75017-5 PMID: 33093596
  50. Md S, Alhakamy NA, Aldawsari HM, et al. Formulation design, statistical optimization, and in vitro evaluation of a Naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals 2020; 13(7): 152. doi: 10.3390/ph13070152 PMID: 32679917
  51. Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int J Nanomed 2020; 15: 7651-66. doi: 10.2147/IJN.S252640 PMID: 33116493
  52. Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol 2023; 80: 104151. doi: 10.1016/j.jddst.2023.104151
  53. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58(2): 97-110. doi: 10.3322/CA.2007.0003 PMID: 18227410
  54. Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 2007; 3(2): 103-10. doi: 10.1016/j.nano.2006.12.002 PMID: 17442621
  55. Lim J, Kostiainen M, Maly J, et al. Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc 2013; 135(12): 4660-3. doi: 10.1021/ja400432e PMID: 23398590
  56. Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 2013; 10(3): 793-812. doi: 10.1021/mp3005325 PMID: 23294202
  57. Amreddy N, Babu A, Panneerselvam J, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 2018; 14(2): 373-84. doi: 10.1016/j.nano.2017.11.010 PMID: 29155362
  58. Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019; 136: 18-28. doi: 10.1016/j.ejpb.2019.01.006 PMID: 30633973
  59. Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26(7): 750-64. doi: 10.1080/10837450.2021.1944205 PMID: 34154500
  60. Guo XL, Kang XX, Wang YQ, et al. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019; 84: 367-77. doi: 10.1016/j.actbio.2018.12.007 PMID: 30528609
  61. Ghaffari M, Dehghan G, Baradaran B, et al. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2020; 188: 110762. doi: 10.1016/j.colsurfb.2019.110762 PMID: 31911391
  62. Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017; 55: 153-62. doi: 10.1016/j.actbio.2017.02.047 PMID: 28259838
  63. Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005; 65(12): 5317-24. doi: 10.1158/0008-5472.CAN-04-3921 PMID: 15958579
  64. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med 2013; 64(1): 15-29. doi: 10.1146/annurev-med-050311-201823 PMID: 23043493
  65. Xu S, Cui F, Huang D, et al. PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine 2018; 14: 17-32. doi: 10.2147/IJN.S175340 PMID: 30587982
  66. Mohd-Zahid MH, Zulkifli SN, Che Abdullah CA, et al. Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting. RSC Advan 2021; 11(26): 16131-41. doi: 10.1039/D1RA01093J PMID: 35481195
  67. Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm Res 2021; 38(3): 429-50. doi: 10.1007/s11095-021-02986-1 PMID: 33655395
  68. Tummala S, Gowthamarajan K, Satish Kumar MN, et al. Formulation and optimization of oxaliplatin immuno-nanoparticles using Box-Behnken design and cytotoxicity assessment for synergistic and receptor-mediated targeting in the treatment of colorectal cancer. Artif Cells Nanomed Biotechnol 2016; 44(8): 1835-50. doi: 10.3109/21691401.2015.1111226 PMID: 26697734
  69. Abedin MR, Powers K, Aiardo R, Barua D, Barua S. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep 2021; 11(1): 7347. doi: 10.1038/s41598-021-86762-6 PMID: 33795712
  70. György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88. doi: 10.1007/s00018-011-0689-3 PMID: 21560073
  71. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
  72. Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine 2016; 11(18): 2431-41. doi: 10.2217/nnm-2016-0154 PMID: 27558906
  73. Wei W, Ao Q, Wang X, et al. Mesenchymal stem cell-derived exosomes: A promising biological tool in nanomedicine. Front Pharmacol 2021; 11: 590470. doi: 10.3389/fphar.2020.590470 PMID: 33716723
  74. Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016; 12(3): 655-64. doi: 10.1016/j.nano.2015.10.012 PMID: 26586551
  75. Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 2019; 9(6): 1714-27. doi: 10.7150/thno.30716 PMID: 31037133
  76. Hosseini NF, Amini R, Ramezani M, Saidijam M, Hashemi SM, Najafi R. AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Biomed Pharmacother 2022; 155: 113690. doi: 10.1016/j.biopha.2022.113690 PMID: 36099793
  77. Qi R, Zhu G, Wang Y, et al. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes’ response to nanotherapy. Biomed Microdevices 2019; 21(2): 35. doi: 10.1007/s10544-019-0381-1 PMID: 30906967
  78. Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano 2018; 12(9): 9568-77. doi: 10.1021/acsnano.8b05377 PMID: 30130093
  79. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem 2019; 88(1): 487-514. doi: 10.1146/annurev-biochem-013118-111902 PMID: 31220978
  80. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305. doi: 10.2174/156720107782151269 PMID: 17979650
  81. Visht S, Awasthi R, Rai R, Srivastav P. Development of dehydration-rehydration liposomal system using film hydration technique followed by sonication. Curr Drug Deliv 2014; 11(6): 763-70. doi: 10.2174/1567201811666140910122945 PMID: 25213073
  82. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48. doi: 10.1016/j.addr.2012.09.037 PMID: 23036225
  83. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9. doi: 10.1038/sj.clpt.6100400 PMID: 17957183
  84. Wang X, Liu X, Li Y, et al. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials 2017; 141: 50-62. doi: 10.1016/j.biomaterials.2017.06.034 PMID: 28667899
  85. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71. doi: 10.1038/nrc1566 PMID: 15738981
  86. Shariat S, Badiee A, Amir Jalali S, Mansourian M, Alireza Mortazavi S, Reza Jaafari M. Preparation and characterization of different liposomal formulations containing P5 HER2/neu-derived peptide and evaluation of their immunological responses and antitumor effects. Iran J Basic Med Sci 2015; 18(5): 506-13. PMID: 26124938
  87. Han B, Yang Y, Chen J, et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int J Nanomedicine 2020; 15: 553-71. doi: 10.2147/IJN.S228715 PMID: 32158208
  88. Abeesh P, Guruvayoorappan C. Preparation and characterization of beta sitosterol encapsulated nanoliposomal formulation for improved delivery to cancer cells and evaluation of its anti-tumor activities against Daltons Lymphoma Ascites tumor models. J Drug Deliv Sci Technol 2022; 70: 102832. doi: 10.1016/j.jddst.2021.102832
  89. Das A, Konyak PM, Das A, Dey SK, Saha C. Physicochemical characterization of dual action liposomal formulations: Anticancer and antimicrobial. Heliyon 2019; 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372 PMID: 31497672
  90. Deshmukh PK, Mutha RE, Surana SJ. Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Dev Ind Pharm 2021; 47(5): 809-19. doi: 10.1080/03639045.2021.1934873 PMID: 34039121
  91. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16(7): 691-707. doi: 10.1097/01.cad.0000167902.53039.5a PMID: 16027517
  92. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300. PMID: 18019829
  93. Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021; 69: 52-68. doi: 10.1016/j.semcancer.2020.01.011 PMID: 32014609
  94. Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95. doi: 10.1016/j.ejps.2006.01.001 PMID: 16472996
  95. Khatamian N, Motavalizadehkakhky A, Homayouni Tabrizi M, Mehrzad J, Zhiani R. Preparation and characterization of the myricetin-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its antitumor and anti-angiogenic activities in vitro and in vivo in mice bearing tumor models. Cancer Nanotechnol 2023; 14(1): 9. doi: 10.1186/s12645-023-00160-3
  96. da Rocha MCO, da Silva PB, Radicchi MA, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnology 2020; 18(1): 43. doi: 10.1186/s12951-020-00604-7 PMID: 32164731
  97. Geetha T, Kapila M, Prakash O, Deol PK, Kakkar V, Kaur IP. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target 2015; 23(2): 159-69. doi: 10.3109/1061186X.2014.965717 PMID: 25268273
  98. Wang J, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett 2016; 11(1): 524. doi: 10.1186/s11671-016-1698-9 PMID: 27888498
  99. Wang L, Wang CY, Zhang Y, Fu HJ, Gao Y, Zhang KR. Preparation and characterization of solid lipid nanoparticles loaded with salmon calcitonin phospholipid complex. J Drug Deliv Sci Technol 2019; 52: 838-45. doi: 10.1016/j.jddst.2019.05.045
  100. Stella B, Peira E, Dianzani C, et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials 2018; 8(2): 110. doi: 10.3390/nano8020110 PMID: 29462932
  101. Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201. doi: 10.1016/j.ejpb.2009.11.003 PMID: 19900544
  102. Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 57. doi: 10.1186/s12989-016-0168-y PMID: 27799056
  103. Krishna KV, Ménard-Moyon C, Verma S, Bianco A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013; 8(10): 1669-88. doi: 10.2217/nnm.13.140 PMID: 24074389
  104. Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286: 64-73. doi: 10.1016/j.jconrel.2018.07.034 PMID: 30031155
  105. Tao Y, Zhu L, Zhao Y, et al. Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy. Nanoscale 2018; 10(11): 5114-23. doi: 10.1039/C7NR08747K PMID: 29487939
  106. Zhang X, Tian W, Cai X, et al. Hydrazinocurcumin Encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 2013; 8(6): e65896. doi: 10.1371/journal.pone.0065896 PMID: 23825527
  107. Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy". Oncotarget 2015; 6(6): 3553-62. doi: 10.18632/oncotarget.3348 PMID: 25708684
  108. Chen Z, Mao R, Liu Y. Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 2012; 13(8): 1035-45. doi: 10.2174/138920012802850128 PMID: 22380017
  109. Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci 2007; 6(11): 1139-49. doi: 10.1039/b711141j PMID: 17973044
  110. Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 1997; 88(11): 1108-16. doi: 10.1111/j.1349-7006.1997.tb00336.x PMID: 9439687
  111. Liao X, Zhang X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. Nanotechnology 2012; 23(3): 035101. doi: 10.1088/0957-4484/23/3/035101 PMID: 22173212
  112. Melati A, Hidayati E. Synthesis and characterization of carbon nanotube from coconut shells activated carbon. J Phys Conf Ser 2016; 694: 012073. doi: 10.1088/1742-6596/694/1/012073
  113. Tan JM, Bullo S, Fakurazi S, Hussein MZ. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci Rep 2020; 10(1): 16941. doi: 10.1038/s41598-020-73963-8 PMID: 33037287
  114. Singh N, Sachdev A, Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol 2018; 18(3): 1534-41. doi: 10.1166/jnn.2018.14222 PMID: 29448627
  115. Oskoueian A, Amin Matori K, Bayat S, Oskoueian E, Ostovan F, Toozandehjani M. Fabrication, characterization, and functionalization of single-walled carbon nanotube conjugated with tamoxifen and its anticancer potential against human breast cancer cells. J Nanomater 2018; 2018: 1-13. doi: 10.1155/2018/8417016
  116. Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev 2020; 52(1): 205-24. doi: 10.1080/03602532.2020.1726943 PMID: 32083952
  117. Spyratou E, Makropoulou M, Efstathopoulos E, Georgakilas A, Sihver L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017; 9(12): 173. doi: 10.3390/cancers9120173 PMID: 29257070
  118. Maity D, Kandasamy G. Superparamagnetic nanoparticles for cancer hyperthermia treatment Nanotechnology characterization tools for tissue engineering and medical therapy. Berlin, Heidelberg: Springer 2019; pp. 299-332. doi: 10.1007/978-3-662-59596-1_7
  119. Li T, Shi S, Goel S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019; 89: 1-13. doi: 10.1016/j.actbio.2019.02.031 PMID: 30797106
  120. Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456. doi: 10.1016/j.pharmthera.2019.107456 PMID: 31863820
  121. Zabielska-Koczywąs K, Lechowski R. The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules 2017; 22(12): 2167. doi: 10.3390/molecules22122167 PMID: 29215573

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers