Nanotechnological Carriers in the Treatment of Cancer: A Review
- Authors: Gautam D.1, Talwan P.1, Kumar S.2, Joshi G.3, Singh R.4
-
Affiliations:
- Department of Pharmaceutical Sciences,, Himachal Institute of Pharmaceutical Education & Research
- Department of Pharmacognosy, Laureate Institute of Pharmacy
- Department of Pharmacy Practice, University Institute of Pharma Sciences,, Chandigarh University
- Vice Chancellor, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University
- Issue: Vol 14, No 2 (2024)
- Pages: 99-114
- Section: Pharmacology
- URL: https://cardiosomatics.ru/2468-1873/article/view/675834
- DOI: https://doi.org/10.2174/0124681873270774231008100554
- ID: 675834
Cite item
Full Text
Abstract
There is an urgent need of advanced techniques/technologies for the treatment of can-cer as it is becoming the major cause of mortality and morbidity worldwide. The improvement of the cancer drug delivery system has been made possible by the formation of novel nanomaterials and nanocarriers. The nanocarriers prevent rapid degradation of the drug and thereby deliver the drug to a specific tumor site at therapeutic concentrations, meanwhile reducing the adverse/side effects by avoiding the delivery of the drug to normal sites. The antitumor activity can be en-hanced by increasing the tumoral uptake of nanocarriers. By delivering the nanocarriers either by active or passive targeting, the tumoral uptake can be increased. The pharmacokinetics, pharma-codynamics, and safety profile of the drug are determined by structural and physical factors like size, charge, shape, and other surface characteristics, hence the design of the nanoparticles is an important factor. In the present review, the mechanism of cellular targeting, along with the differ-ent nanoparticles used in cancer therapy is discussed. Nanotechnology have gained huge ground due to improved diagnosis and treatment additionally saving the time and resources, which makes this technology to get more landscape for researchers/ oncologists.
Keywords
About the authors
Darsh Gautam
Department of Pharmaceutical Sciences,, Himachal Institute of Pharmaceutical Education & Research
Author for correspondence.
Email: info@benthamscience.net
Poonam Talwan
Department of Pharmaceutical Sciences,, Himachal Institute of Pharmaceutical Education & Research
Email: info@benthamscience.net
Sanjay Kumar
Department of Pharmacognosy, Laureate Institute of Pharmacy
Email: info@benthamscience.net
Gaurav Joshi
Department of Pharmacy Practice, University Institute of Pharma Sciences,, Chandigarh University
Email: info@benthamscience.net
Ranjit Singh
Vice Chancellor, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University
Email: info@benthamscience.net
References
- Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008-2030): A population-based study. Lancet Oncol 2012; 13(8): 790-801. doi: 10.1016/S1470-2045(12)70211-5 PMID: 22658655
- Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92. PMID: 2946403
- Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 2010; 1(2): 323-34. doi: 10.4155/tde.10.13 PMID: 22816135
- Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750-63. doi: 10.1038/nrc903 PMID: 12360278
- Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41(1): 189-207. doi: 10.1016/S0065-2571(00)00013-3 PMID: 11384745
- Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000; 85(3): 217-29. doi: 10.1016/S0163-7258(99)00073-X PMID: 10739876
- Park W, Heo YJ, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res 2018; 22(1): 24. doi: 10.1186/s40824-018-0133-y PMID: 30275967
- Kroemer G, Zitvogel L. The breakthrough of the microbiota. Nat Rev Immunol 2018; 18(2): 87-8. doi: 10.1038/nri.2018.4 PMID: 29379189
- Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol 2018; 19(S1) (Suppl. 1): 31-9. doi: 10.1007/s40257-018-0384-3 PMID: 30374901
- Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Proc Synth 2020; 9(1): 304-39. doi: 10.1515/gps-2020-0031
- Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. C R Phys 2011; 12(7): 620-36. doi: 10.1016/j.crhy.2011.06.001
- Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110. doi: 10.1021/cr068445e PMID: 18543879
- Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 2012; 57(4): 724-803. doi: 10.1016/j.pmatsci.2011.08.003
- Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 2016; 6(1): 26332. doi: 10.1038/srep26332 PMID: 27189842
- Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008; 97(9): 3518-90. doi: 10.1002/jps.21270 PMID: 18200527
- Barar J, Omidi Y. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts 2013; 3(4): 149-62. doi: 10.5681/bi.2013.036 PMID: 24455478
- Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2021; 268: 120562. doi: 10.1016/j.biomaterials.2020.120562 PMID: 33278682
- Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5. doi: 10.1016/j.addr.2010.03.011 PMID: 20304019
- Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM. Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 2002; 200(6): 581-97. doi: 10.1046/j.1469-7580.2002.00066.x PMID: 12162726
- Jain RK. The next frontier of molecular medicine: Delivery of therapeutics. Nat Med 1998; 4(6): 655-7. doi: 10.1038/nm0698-655 PMID: 9623964
- Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci 1998; 95(8): 4607-12. doi: 10.1073/pnas.95.8.4607 PMID: 9539785
- Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 2007; 9(1): 229-56. doi: 10.1146/annurev.bioeng.9.060906.151850 PMID: 17459001
- Padera TP, Stoll BR, Tooredman JB, Capen D, Tomaso E, Jain RK. Cancer cells compress intratumour vessels. Nature 2004; 427(6976): 695. doi: 10.1038/427695a PMID: 14973470
- Mukwaya G, Forssen EA, Schmidt P, Ross M. DaunoXome® (Liposomal Daunorubicin) for first-line treatment of advanced, HIV-related Kaposis Sarcoma Long Circulating Liposomes: Old Drugs, New Therapeutics. Berlin, Heidelberg: Springer 1998; pp. 147-63. doi: 10.1007/978-3-662-22115-0_10
- Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60. doi: 10.1038/nnano.2007.387 PMID: 18654426
- Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem Soc Rev 2012; 41(7): 2971-3010. doi: 10.1039/c2cs15344k PMID: 22388185
- Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26. doi: 10.1016/j.addr.2008.08.005 PMID: 18840489
- Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol 2010; 27(7): 215-31. doi: 10.3109/09687688.2010.510804 PMID: 20939772
- Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman C, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11: 2871-90. doi: 10.2147/DDDT.S142337 PMID: 29033548
- Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 2016; 142(11): 2217-29. doi: 10.1007/s00432-016-2179-3 PMID: 27209529
- Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res 2018; 137: 115-70. doi: 10.1016/bs.acr.2017.11.003 PMID: 29405974
- Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 2016; 60: 569-78. doi: 10.1016/j.msec.2015.11.067 PMID: 26706565
- Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2013; 111: 150-5. doi: 10.1016/j.colsurfb.2013.05.020 PMID: 23792547
- Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61. doi: 10.1039/c2cs15327k PMID: 22334259
- Andronescu E, Grumezescu AM. Nanostructures for drug delivery. Elsevier 2017. Available from: https://www.elsevier.com/books/nanostructuresfor-drug-delivery/andronescu/978-0-323-46143-6
- Almoustafa HA, Alshawsh MA, Al-Suede FSR, Alshehade SA, Abdul Majid AMS, Chik Z. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers 2023; 15(2): 284. doi: 10.3390/polym15020284 PMID: 36679166
- Dadras P, Atyabi F, Irani S, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97: 47-54. doi: 10.1016/j.ejps.2016.11.005 PMID: 27825919
- Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 2015; 8(10): 19670-81. PMID: 26770631
- Liu X, Li J, Huang L, et al. Preparation and evaluation of MPEG-PCL polymeric nanoparticles against gastric cancer. J Wuhan Univ TechnolMat Sci Ed 2020; 35(6): 1162-8. doi: 10.1007/s11595-020-2368-4
- Abdellatif AAH, Ali AT, Bouazzaoui A, Alsharidah M, Al Rugaie O, Tolba NS. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol Rev 2022; 11(1): 987-1004. doi: 10.1515/ntrev-2022-0058
- Bhattacharyya J, Bellucci JJ, Weitzhandler I, et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat Commun 2015; 6(1): 7939. doi: 10.1038/ncomms8939 PMID: 26239362
- Bernardi A, Braganhol E, Jäger E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 2009; 281(1): 53-63. doi: 10.1016/j.canlet.2009.02.018 PMID: 19286307
- Ma P, Dong X, Swadley CL, et al. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 2009; 5(2): 151-61. doi: 10.1166/jbn.2009.1021 PMID: 20055093
- Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion:An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7. doi: 10.1007/s13205-014-0214-0
- Du M, Yang Z, Lu W, et al. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul 2020; 37(6): 403-12. doi: 10.1080/02652048.2020.1767224 PMID: 32401077
- Dianzani C, Monge C, Miglio G, et al. Nanoemulsions as delivery systems for poly-chemotherapy aiming at melanoma treatment. Cancers 2020; 12(5): 1198. doi: 10.3390/cancers12051198 PMID: 32397484
- Kurtz SL, Lawson LB. Nanoemulsions enhance in vitro transpapillary diffusion of model fluorescent dye nile red. Sci Rep 2019; 9(1): 11810. doi: 10.1038/s41598-019-48144-x PMID: 31413320
- Khan I, Bahuguna A, Kumar P, Bajpai VK, Kang SC. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci Rep 2018; 8(1): 144. doi: 10.1038/s41598-017-18644-9 PMID: 29317755
- Alkhatib MH, Bawadud RS, Gashlan HM. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells. Sci Rep 2020; 10(1): 18124. doi: 10.1038/s41598-020-75017-5 PMID: 33093596
- Md S, Alhakamy NA, Aldawsari HM, et al. Formulation design, statistical optimization, and in vitro evaluation of a Naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals 2020; 13(7): 152. doi: 10.3390/ph13070152 PMID: 32679917
- Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int J Nanomed 2020; 15: 7651-66. doi: 10.2147/IJN.S252640 PMID: 33116493
- Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol 2023; 80: 104151. doi: 10.1016/j.jddst.2023.104151
- Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008; 58(2): 97-110. doi: 10.3322/CA.2007.0003 PMID: 18227410
- Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 2007; 3(2): 103-10. doi: 10.1016/j.nano.2006.12.002 PMID: 17442621
- Lim J, Kostiainen M, Maly J, et al. Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc 2013; 135(12): 4660-3. doi: 10.1021/ja400432e PMID: 23398590
- Lo ST, Kumar A, Hsieh JT, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 2013; 10(3): 793-812. doi: 10.1021/mp3005325 PMID: 23294202
- Amreddy N, Babu A, Panneerselvam J, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 2018; 14(2): 373-84. doi: 10.1016/j.nano.2017.11.010 PMID: 29155362
- Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019; 136: 18-28. doi: 10.1016/j.ejpb.2019.01.006 PMID: 30633973
- Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26(7): 750-64. doi: 10.1080/10837450.2021.1944205 PMID: 34154500
- Guo XL, Kang XX, Wang YQ, et al. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 2019; 84: 367-77. doi: 10.1016/j.actbio.2018.12.007 PMID: 30528609
- Ghaffari M, Dehghan G, Baradaran B, et al. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2020; 188: 110762. doi: 10.1016/j.colsurfb.2019.110762 PMID: 31911391
- Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017; 55: 153-62. doi: 10.1016/j.actbio.2017.02.047 PMID: 28259838
- Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005; 65(12): 5317-24. doi: 10.1158/0008-5472.CAN-04-3921 PMID: 15958579
- Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med 2013; 64(1): 15-29. doi: 10.1146/annurev-med-050311-201823 PMID: 23043493
- Xu S, Cui F, Huang D, et al. PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. Int J Nanomedicine 2018; 14: 17-32. doi: 10.2147/IJN.S175340 PMID: 30587982
- Mohd-Zahid MH, Zulkifli SN, Che Abdullah CA, et al. Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting. RSC Advan 2021; 11(26): 16131-41. doi: 10.1039/D1RA01093J PMID: 35481195
- Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2C5-modified immunoliposomes for cancer therapy. Pharm Res 2021; 38(3): 429-50. doi: 10.1007/s11095-021-02986-1 PMID: 33655395
- Tummala S, Gowthamarajan K, Satish Kumar MN, et al. Formulation and optimization of oxaliplatin immuno-nanoparticles using Box-Behnken design and cytotoxicity assessment for synergistic and receptor-mediated targeting in the treatment of colorectal cancer. Artif Cells Nanomed Biotechnol 2016; 44(8): 1835-50. doi: 10.3109/21691401.2015.1111226 PMID: 26697734
- Abedin MR, Powers K, Aiardo R, Barua D, Barua S. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci Rep 2021; 11(1): 7347. doi: 10.1038/s41598-021-86762-6 PMID: 33795712
- György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88. doi: 10.1007/s00018-011-0689-3 PMID: 21560073
- Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138 PMID: 23420871
- Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine 2016; 11(18): 2431-41. doi: 10.2217/nnm-2016-0154 PMID: 27558906
- Wei W, Ao Q, Wang X, et al. Mesenchymal stem cell-derived exosomes: A promising biological tool in nanomedicine. Front Pharmacol 2021; 11: 590470. doi: 10.3389/fphar.2020.590470 PMID: 33716723
- Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016; 12(3): 655-64. doi: 10.1016/j.nano.2015.10.012 PMID: 26586551
- Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 2019; 9(6): 1714-27. doi: 10.7150/thno.30716 PMID: 31037133
- Hosseini NF, Amini R, Ramezani M, Saidijam M, Hashemi SM, Najafi R. AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Biomed Pharmacother 2022; 155: 113690. doi: 10.1016/j.biopha.2022.113690 PMID: 36099793
- Qi R, Zhu G, Wang Y, et al. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes response to nanotherapy. Biomed Microdevices 2019; 21(2): 35. doi: 10.1007/s10544-019-0381-1 PMID: 30906967
- Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano 2018; 12(9): 9568-77. doi: 10.1021/acsnano.8b05377 PMID: 30130093
- Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem 2019; 88(1): 487-514. doi: 10.1146/annurev-biochem-013118-111902 PMID: 31220978
- Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305. doi: 10.2174/156720107782151269 PMID: 17979650
- Visht S, Awasthi R, Rai R, Srivastav P. Development of dehydration-rehydration liposomal system using film hydration technique followed by sonication. Curr Drug Deliv 2014; 11(6): 763-70. doi: 10.2174/1567201811666140910122945 PMID: 25213073
- Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48. doi: 10.1016/j.addr.2012.09.037 PMID: 23036225
- Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9. doi: 10.1038/sj.clpt.6100400 PMID: 17957183
- Wang X, Liu X, Li Y, et al. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials 2017; 141: 50-62. doi: 10.1016/j.biomaterials.2017.06.034 PMID: 28667899
- Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71. doi: 10.1038/nrc1566 PMID: 15738981
- Shariat S, Badiee A, Amir Jalali S, Mansourian M, Alireza Mortazavi S, Reza Jaafari M. Preparation and characterization of different liposomal formulations containing P5 HER2/neu-derived peptide and evaluation of their immunological responses and antitumor effects. Iran J Basic Med Sci 2015; 18(5): 506-13. PMID: 26124938
- Han B, Yang Y, Chen J, et al. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int J Nanomedicine 2020; 15: 553-71. doi: 10.2147/IJN.S228715 PMID: 32158208
- Abeesh P, Guruvayoorappan C. Preparation and characterization of beta sitosterol encapsulated nanoliposomal formulation for improved delivery to cancer cells and evaluation of its anti-tumor activities against Daltons Lymphoma Ascites tumor models. J Drug Deliv Sci Technol 2022; 70: 102832. doi: 10.1016/j.jddst.2021.102832
- Das A, Konyak PM, Das A, Dey SK, Saha C. Physicochemical characterization of dual action liposomal formulations: Anticancer and antimicrobial. Heliyon 2019; 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372 PMID: 31497672
- Deshmukh PK, Mutha RE, Surana SJ. Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Dev Ind Pharm 2021; 47(5): 809-19. doi: 10.1080/03639045.2021.1934873 PMID: 34039121
- Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16(7): 691-707. doi: 10.1097/01.cad.0000167902.53039.5a PMID: 16027517
- Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300. PMID: 18019829
- Ali ES, Sharker SM, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2021; 69: 52-68. doi: 10.1016/j.semcancer.2020.01.011 PMID: 32014609
- Lu B, Xiong SB, Yang H, Yin XD, Chao RB. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95. doi: 10.1016/j.ejps.2006.01.001 PMID: 16472996
- Khatamian N, Motavalizadehkakhky A, Homayouni Tabrizi M, Mehrzad J, Zhiani R. Preparation and characterization of the myricetin-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its antitumor and anti-angiogenic activities in vitro and in vivo in mice bearing tumor models. Cancer Nanotechnol 2023; 14(1): 9. doi: 10.1186/s12645-023-00160-3
- da Rocha MCO, da Silva PB, Radicchi MA, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnology 2020; 18(1): 43. doi: 10.1186/s12951-020-00604-7 PMID: 32164731
- Geetha T, Kapila M, Prakash O, Deol PK, Kakkar V, Kaur IP. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target 2015; 23(2): 159-69. doi: 10.3109/1061186X.2014.965717 PMID: 25268273
- Wang J, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett 2016; 11(1): 524. doi: 10.1186/s11671-016-1698-9 PMID: 27888498
- Wang L, Wang CY, Zhang Y, Fu HJ, Gao Y, Zhang KR. Preparation and characterization of solid lipid nanoparticles loaded with salmon calcitonin phospholipid complex. J Drug Deliv Sci Technol 2019; 52: 838-45. doi: 10.1016/j.jddst.2019.05.045
- Stella B, Peira E, Dianzani C, et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials 2018; 8(2): 110. doi: 10.3390/nano8020110 PMID: 29462932
- Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201. doi: 10.1016/j.ejpb.2009.11.003 PMID: 19900544
- Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 57. doi: 10.1186/s12989-016-0168-y PMID: 27799056
- Krishna KV, Ménard-Moyon C, Verma S, Bianco A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013; 8(10): 1669-88. doi: 10.2217/nnm.13.140 PMID: 24074389
- Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286: 64-73. doi: 10.1016/j.jconrel.2018.07.034 PMID: 30031155
- Tao Y, Zhu L, Zhao Y, et al. Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy. Nanoscale 2018; 10(11): 5114-23. doi: 10.1039/C7NR08747K PMID: 29487939
- Zhang X, Tian W, Cai X, et al. Hydrazinocurcumin Encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 2013; 8(6): e65896. doi: 10.1371/journal.pone.0065896 PMID: 23825527
- Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via "differentiation-based nano-therapy". Oncotarget 2015; 6(6): 3553-62. doi: 10.18632/oncotarget.3348 PMID: 25708684
- Chen Z, Mao R, Liu Y. Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 2012; 13(8): 1035-45. doi: 10.2174/138920012802850128 PMID: 22380017
- Mroz P, Tegos GP, Gali H, Wharton T, Sarna T, Hamblin MR. Photodynamic therapy with fullerenes. Photochem Photobiol Sci 2007; 6(11): 1139-49. doi: 10.1039/b711141j PMID: 17973044
- Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 1997; 88(11): 1108-16. doi: 10.1111/j.1349-7006.1997.tb00336.x PMID: 9439687
- Liao X, Zhang X. Preparation, characterization and cytotoxicity of carbon nanotube-chitosan-phycocyanin complex. Nanotechnology 2012; 23(3): 035101. doi: 10.1088/0957-4484/23/3/035101 PMID: 22173212
- Melati A, Hidayati E. Synthesis and characterization of carbon nanotube from coconut shells activated carbon. J Phys Conf Ser 2016; 694: 012073. doi: 10.1088/1742-6596/694/1/012073
- Tan JM, Bullo S, Fakurazi S, Hussein MZ. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci Rep 2020; 10(1): 16941. doi: 10.1038/s41598-020-73963-8 PMID: 33037287
- Singh N, Sachdev A, Gopinath P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol 2018; 18(3): 1534-41. doi: 10.1166/jnn.2018.14222 PMID: 29448627
- Oskoueian A, Amin Matori K, Bayat S, Oskoueian E, Ostovan F, Toozandehjani M. Fabrication, characterization, and functionalization of single-walled carbon nanotube conjugated with tamoxifen and its anticancer potential against human breast cancer cells. J Nanomater 2018; 2018: 1-13. doi: 10.1155/2018/8417016
- Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang WH, Parvin N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev 2020; 52(1): 205-24. doi: 10.1080/03602532.2020.1726943 PMID: 32083952
- Spyratou E, Makropoulou M, Efstathopoulos E, Georgakilas A, Sihver L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 2017; 9(12): 173. doi: 10.3390/cancers9120173 PMID: 29257070
- Maity D, Kandasamy G. Superparamagnetic nanoparticles for cancer hyperthermia treatment Nanotechnology characterization tools for tissue engineering and medical therapy. Berlin, Heidelberg: Springer 2019; pp. 299-332. doi: 10.1007/978-3-662-59596-1_7
- Li T, Shi S, Goel S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019; 89: 1-13. doi: 10.1016/j.actbio.2019.02.031 PMID: 30797106
- Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456. doi: 10.1016/j.pharmthera.2019.107456 PMID: 31863820
- Zabielska-Koczywąs K, Lechowski R. The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules 2017; 22(12): 2167. doi: 10.3390/molecules22122167 PMID: 29215573
Supplementary files
