On the generation of frequency combs based on mechanical vibrations of 2D material nanosheets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the nonlinear dynamics of a rectangular atomically thin nanostrip under conditions of internal combinational resonance between two transverse and one longitudinal modes of mechanical vibrations. Conditions have been analytically found for the initial pretension of the layer required to realize resonance between eigenforms with given indices of variability along the length. It is shown that under conditions of internal resonance, a nonlinear mode of free oscillations is excited in the system, the spectrum of which has the form of a frequency comb. Two qualitatively different types of oscillations of this kind are identified – those caused by the initial excitation in the working longitudinal form of oscillations and in two transverse forms. A significant dependence of the spectral composition of the generated frequency combs on the relationships between the amplitudes of the initial disturbance for the three interacting modes and on the value of the internal frequency detuning parameter of the system is shown.

Full Text

Restricted Access

About the authors

А. V. Lukin

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: lukin_av@spbstu.ru
Russian Federation, Saint-Petersburg

I. A. Popov

Peter the Great St. Petersburg Polytechnic University

Email: lukin_av@spbstu.ru
Russian Federation, Saint-Petersburg

O. V. Privalova

Peter the Great St. Petersburg Polytechnic University

Email: lukin_av@spbstu.ru
Russian Federation, Saint-Petersburg

L. V. Shtukin

Peter the Great St. Petersburg Polytechnic University

Email: lukin_av@spbstu.ru
Russian Federation, Saint-Petersburg

References

  1. Xiao X., Li C., Fan S.-C., Liu Y.-J., Liu Y. Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sensors and Actuators B.: Chemical, 2023. 374, 132851. https://doi.org/10.1016/j.snb.2022.132851
  2. Roslon I., Steeneken P.G., Alijani F., Roslon I.E., Japaridze A., Naarden L., Smeets L., Dekker C., van Belkum A., Alijani F. Prospects and Challenges for Graphene Drums as Sensors of Individual Bacteria. 2023. https://doi.org/10.1101/2023.11.20.567863
  3. Xu B., Zhang P., Zhu J., Liu Z., Eichler A., Zheng X.Q., Lee J., Dash A., More S., Wu S., Wang Y., Jia H., Naik A., Bachtold A., Yang R., Feng P. X. L., Wang Z. Nanomechanical Resonators: Toward Atomic Scale // ACS Nano. 2022. V. 16, Iss. 10. P. 15545–15585. American Chemical Society. https://doi.org/10.1021/acsnano.2c01673
  4. Sajadi B., van Hemert S., Arash B., Belardinelli P., Steeneken P.G., Alijani F. Size- and temperature-dependent bending rigidity of graphene using modal analysis // Carbon. 2018. V. 139. P. 334–341. https://doi.org/10.1016/j.carbon.2018.06.066
  5. Ferrari P.F., Kim S.P., van der Zande A.M. Nanoelectromechanical systems from two-dimensional materials // Appl. Physics Reviews. 2023. V. 10. Iss. 3. American Institute of Physics Inc. https://doi.org/10.1063/5.0106731
  6. Steeneken P.G., Dolleman R.J., Davidovikj D., Alijani F., van der Zant H.S.J. Dynamics of 2D material membranes // 2D Materials. 2021. V. 8. Iss. 4. IOP Publishing Ltd. https://doi.org/10.1088/2053-1583/ac152c
  7. Cupertino A., Shin D., Guo L., Steeneken P.G., Bessa M.A., Norte R.A. Centimeter-scale nanomechanical resonators with low dissipation. 2023. http://arxiv.org/abs/2308.00611
  8. Dolleman R.J., Houri S., Chandrashekar A., Alijani F., van der Zant H.S.J., Steeneken P.G. Opto-thermally excited multimode parametric resonance in graphene membranes // Scientific Reports, 2018. 8(1). https://doi.org/10.1038/s41598-018-27561-4
  9. Yang F., Rochau F., Huber J.S., Brieussel A., Rastelli G., Weig E.M., Scheer E. Spatial Modulation of Nonlinear Flexural Vibrations of Membrane Resonators // Physical Review Letters. 2019. V. 122(15). https://doi.org/10.1103/PhysRevLett.122.154301
  10. Zega V., Nitzan S., Li M., Ahn C.H., Ng E., Hong V., Yang Y., Kenny T., Corigliano A., Horsley D.A. Predicting the closed-loop stability and oscillation amplitude of nonlinear parametrically amplified oscillators // Appl. Physics Letters. 2015. V. 106(23). https://doi.org/10.1063/1.4922533
  11. Keşkekler A., Shoshani O., Lee M., van der Zant H.S.J., Steeneken P.G., Alijani F. Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance // Nature Communications. 2021. V. 12(1). https://doi.org/10.1038/s41467-021-21334-w
  12. Lee J., Shaw S.W., Feng P.X.L. Giant parametric amplification and spectral narrowing in atomically thin MoS2 nanomechanical resonators // Appl. Physics Reviews. 2022. V. 9(1). https://doi.org/10.1063/5.0045106
  13. Liu C.H., Kim I.S., Lauhon L.J. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime // Nano Letters. 2015. V. 15(10). P. 6727–6731. https://doi.org/10.1021/acs.nanolett.5b02586
  14. Keskekler A., Bos V., Aragón A.M., Steeneken P.G., Alijani F. Characterizing multi-mode nonlinear dynamics of nanomechanical resonators. 2023. http://arxiv.org/abs/2304.01419
  15. Wang M., Perez-Morelo D.J., Lopez D., Aksyuk V.A. Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators // Physical Review X. 2022. V. 12(4). https://doi.org/10.1103/PhysRevX.12.041025
  16. de Jong M.H.J., Cupertino A., Shin D., Gröblacher S., Alijani F., Steeneken P.G., Norte R.A. Beating Ringdowns of Near-Degenerate Mechanical Resonances // Physical Review Applied. 2023. V. 20(2), 024053. https://doi.org/10.1103/PhysRevApplied.20.024053
  17. Wei X., Zhang T., Jiang Z., Ren J., Huan R. Frequency latching in nonlinear micromechanical resonators // Appl. Physics Letters. 2017. 110(14). https://doi.org/10.1063/1.4979829
  18. Gajo K., Rastelli G., Weig E.M. Tuning the nonlinear dispersive coupling of nanomechanical string resonators // Phys. Review B, 2020. V. 101(7). https://doi.org/10.1103/PhysRevB.101.075420
  19. Ganesan A., Do C., Seshia A. Phononic Frequency Comb via Intrinsic Three-Wave Mixing. Physical Review Letters, (2017). 118(3). https://doi.org/10.1103/PhysRevLett.118.033903
  20. Udem T., Holzwarth R., Hansch T.W. Optical frequency metrology // Nature. 2002. 416(6877). https://doi.org/10.1038/416233a. PMID: 11894107
  21. Kolachevsky N.N., Khabarova K.Yu., Zalivako I.V., Semerikov I.A., Borisenko A.S., Sherstov I.V., Bagaev S.N., Lugovoy A.A., Prudnikov О.N., Taichenachev A.V., Chepurov S.V. Prospective Quantum-Optical Technologies for Satellite Navigation Challenges // Rocket-Space Device Engineering and Information Systems. 2018. V. 5(1). P. 13–27. https://doi.org/10.30894/issn2409-0239.2018.5.1.13.27
  22. Mantsevich S.N., Kostyleva E.I., Danilin A.N., Khorkin V.S. Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser // Frontiers of Optoelectronics. 2023. 16(1). https://doi.org/10.1007/s12200-023-00079-y
  23. Lee J., Shaw S.W., Feng P.X.L. Phononic Frequency Comb Generation via 1:1 Mode Coupling in MoS2 2D Nanoelectromechanical Resonators // Proc. IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2022. January. P. 503–506. https://doi.org/10.1109/MEMS51670.2022.9699651
  24. Sun J., Yu S., Zhang H., Chen D., Zhou X., Zhao C., Gerrard D.D., Kwon R., Vukasin G., Xiao D., Kenny T.W., Wu X., Seshia A. Generation and Evolution of Phononic Frequency Combs via Coherent Energy Transfer between Mechanical Modes // Phys. Review Applied. 2023. 19(1). https://doi.org/10.1103/PhysRevApplied.19.014031
  25. Ganesan A., Seshia A. Resonance tracking in a micromechanical device using phononic frequency combs // Scientific Reports. 2019. 9(1). https://doi.org/10.1038/s41598-019-46003-3
  26. Zhang T., Seshia A.AA MEMS Frequency Comb Energy Harvester // J. Microelectromechanical Systems. 2023. https://doi.org/10.1109/JMEMS.2023.3316436
  27. Morozov N.F., Indeitsev D.A., Lukin A.V., Popov I.A., Shtukin L.V. Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS // J. Sound and Vibration. 2021. 509. https://doi.org/10.1016/j.jsv.2021.116247

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model of a pre-stretched nanolayer.

Download (68KB)
3. Fig. 2. Layer tension required to implement internal combination resonance.

Download (278KB)
4. Fig. 3. Pulsation mode at initial excitation according to the longitudinal oscillation mode.

Download (339KB)
5. Fig. 4. Spectrogram of oscillations with changes in layer tension.

Download (713KB)

Note

Presented by Academician of the RAS N.F. Morozov


Copyright (c) 2024 Russian Academy of Sciences