Using RBF-FD for calculation of hydroelastic vibrations of axisymmetric orthotropic shells of rotation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Geometrically nonlinear differential equations describing the dynamic deformation of axisymmetric shells of rotation are derived on the basis of general equations for solving functions in the global coordinate system. The equations take into account thinning/thickening at large longitudinal strains as well as transverse shear for thick shells. The motion and pressure of an ideal incompressible fluid is described by a displacement potential. To obtain the numerical solution, the finite difference method based on spline interpolation by polyharmonic radial basis functions is applied. The calculation method is implemented in software package. Good agreement of the calculated displacements with the results of modeling by different finite elements in ANSYS is obtained. The frequencies of the hydroelastic vibrations of the tanks are compared with those obtained by the finite element and boundary element method, as well as with results from published articles by other researchers.

Full Text

Restricted Access

About the authors

С. M. Nguyen

Novosibirsk State Technical University

Author for correspondence.
Email: mckq1985@gmail.com
Russian Federation, Novosibirsk

D. R. Shelevaya

Novosibirsk State Technical University; Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences

Email: mckq1985@gmail.com
Russian Federation, Novosibirsk; Novosibirsk

D. А. Krasnorutsky

Novosibirsk State Technical University; S.A. Chaplygin Siberian Research Institite of Aviation

Email: mckq1985@gmail.com
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Колесников К.С. Динамика топливных систем ЖРД / К.С. Колесников, С.А. Рыбак, Е.А. Самойлов. М.: Машиностроение, 1975. 172 с.
  2. Аннин Б.Д., Волчков Ю.М. Неклассические модели теории пластин и оболочек // Прикладная механика и техническая физика. 2016. № 5. С. 5–14. https://doi.org/10.15372/PMTF20160501
  3. Бочкарев С.А. Собственные колебания усеченных конических оболочек, содержащих жидкость / С.А. Бочкарев, С.В. Лекомцев, В.П. Матвеенко // Прикладная математика и механика. 2022. Т. 86. № 4. С. 505–526. https://doi.org/10.31857/S0032823522040038
  4. Левин В.Е. Метод конечных и граничных элементов в динамике конструкций летательных аппаратов: специальность 05.07.03 “Прочность и тепловые режимы летательных аппаратов”: Диссертация на соискание доктора технических наук / В.Е. Левин. Новосибирский государственный технический университет. Новосибирск, 2001. 341 c.
  5. Красноруцкий Д.А., Лакиза П.А., Шелевая Д.Р. Программный комплекс для моделирования механики системы тонких упругих стержней. Краевые задачи и математическое моделирование: темат. сб. науч. ст. Новокузнецк: Изд-во КГПИ КемГУ, 2023. С. 57–60.
  6. Flyer N., Fornberg B., Bayona V. & Barnett G.A. On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy // J. Computational Physics. 2016. V. 321. P. 21–38. https://doi.org/10.1016/j.jcp.2016.05.026
  7. Shankar V, Wright G.B., Kirby R.M., Fogelson A.L. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces // J. Sci. Comput. 2016. Jun 1. V. 63(3). P. 745–768. https://doi.org/10.1007/s10915-014-9914-1
  8. Kalani Rubasinghe, Guangming Yao, Jing Niu, Gantumur Tsogtgerel. Polyharmonic splines interpolation on scattered data in 2D and 3D with applications, Engineering Analysis with Boundary Elements. 2023. V. 156. P. 240–250. https://doi.org/10.1016/j.enganabound.2023.08.001
  9. Fornberg B., Flyer N. Fast generation of 2-D node distributions for mesh-free PDE discretizations // Computers & Mathematics with Applications. 2015. V. 69. Iss. 7. P. 531–544. https://doi.org/10.1016/j.camwa.2015.01.009
  10. Shankar V. The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF-FD // J. Comput. Phys. 2017. V. 342. P. 211–228.
  11. Гнитько В.И. Сравнение методов конечных и граничных элементов в задачах о колебаниях составной оболочки вращения с жидкостью / В.И. Гнитько, К.Г. Дегтярев, Е.С. Кононенко, А.М. Тонконоженко // Вісник Харківського національного університету імені В. Н. Каразіна. 2019. C. 38–45.
  12. Мокеев В.В. Исследование динамики конструкций с жидкостью и газом с помощью метода конечных элементов // Изв. РАН. Механика твердого тела. 1998. № 6. С. 166–174.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Deformation and equilibrium of a small shell element.

Download (137KB)
3. Fig. 2. Axisymmetric shell of revolution with liquid.

Download (195KB)
4. Fig. 3. Examples of filling the calculation area with nodes.

Download (1MB)
5. Fig. 4. Cylindrical shell. Calculation results.

Download (368KB)
6. Fig. 5. Clamped cylindrical shell. Calculation results.

Download (522KB)
7. Fig. 6. Elliptical shell. Calculation results.

Download (350KB)
8. Fig. 7. Cylindrical (a) and elliptical (b) shells, dependence of displacement on pressure.

Download (297KB)
9. Fig. 8. Conical shell. Calculation results.

Download (304KB)
10. Fig. 9. Composite shell. Calculation results.

Download (391KB)
11. Fig. 10. Conical (a) and composite (b) shells, dependence of displacement on pressure.

Download (275KB)
12. Fig. 11. Convergence of frequencies of hydroelastic oscillations of a hemispherical shell with water.

Download (283KB)
13. Fig. 12. Forms of oscillations of a toroidal tank (FEM-MGE [4] (a), DARSYS (b), frequency convergence (c)).

Download (281KB)

Note

Presented by Academician of the RAS B.D. Annin


Copyright (c) 2024 Russian Academy of Sciences