Underwater pipeline lifting by concentrated force

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a static linear bending of a pipeline when it is lifted by a concentrated force. The weights of the pipe, the transported medium and the lifting force of the water are taken into account. It is assumed that the length of the raised section of the pipeline is greater than the depth of the reservoir. A parametric analysis of the influence of the weight and rigidity characteristics of the pipeline on the required lifting force is given.

About the authors

M. A. Ilgamov

Blagonravov Institute of Machine Science, Russian Academy of Sciences; Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences; Institute of Mechanics, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: ilgamov@anrb.ru

Corresponding Member of the RAS

Russian Federation, Moscow; Kazan; Ufa

References

  1. Palmer A.C., King R.A. Subsea Pipeline Engineering. Oklahoma: PWC, 2004. 570 p.
  2. Peek R., Yun H. Flotation to trigger lateral buckles in pipelines on a flat seabed // J. Engineering Mechanics. 2007. V. 4. P. 442–451. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(442)
  3. Chee J., Walker A., White D. Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation // Ocean Engineering. 2018. V. 151. P. 170 – 190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  4. Wang Z., Tang Y. Study on symmetric buckling mode triggered by dual distributed buoyancy sections for subsea pipelines // Ocean Engineering. 2020. V. 216. P. 105–110. https://doi.org/10.1016/j.oceaneng.2020.108019
  5. Зарипов Р.М., Масалимов Р.Б. Использование компенсаторов в подводном участке морского газопровода для предотвращения его всплытия // Известия Томского политехн. ун-та. Инжиниринг георесурсов. 2023. Т. 334. № 2. С. 196–205. https://doi.org/10.18799/24131830/2023/2/3761
  6. Утяшев И.М., Шакирьянов М.М. Пространственные колебания трубопровода с вибрирующими опорами // Изв. РАН. МТТ. 2023. № 4. С. 38–52. https://doi.org/10.31857/S057232992260058X
  7. Li S.J., Karney B.W., Liu G. FSI research in pipeline systems – A review of the literature // J. Fluids and Structures. 2015. V. 57. P. 277–297. https://doi.org/10.1016/j.jfluidstructs.2015.06.020
  8. Ильгамов М.А., Якупов Р.Г. Сильный изгиб трубопровода // Изв. РАН. МТТ. 2003. № 6. С. 109−116.
  9. Елисеев В.В., Зиновьева Т.В. Нелинейно-упругая деформация подводного трубопровода в процессе укладки // Вычисл. мех. сплош. сред. 2012. № 1. С. 70−78. https://doi.org/10.7242/1999-6691/2012.5.1.9
  10. Ильгамов М.А. Модель всплытия подводного трубопровода // ДАН. Физика, Технические науки. 2022. Т. 504. С. 12–16. https://doi.org/10.31857/S2686740022030087
  11. Ильгамов М.А. Всплытие подводного газового трубопровода // Изв. РАН. МТТ. 2023. № 2. С. 147–159. https://doi.org/10.31857/S0572329922600487
  12. Timoshenko S.P., Woinowsky-Krieger S. Theory of Plates and Shells. 2nd ed. N.Y.: McGraw-Hill. 1959. 591 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences