SYMMETRIES OF THE LUNDGREN–MONIN–NOVIKOV EQUATION FOR PROBABILITY OF THE VORTICITY FIELD DISTRIBUTION
- Autores: Grebenev V.N.1, Grishkov A.N.2, Oberlack M.3
- 
							Afiliações: 
							- Federal Research Center for Information and Computational Technologies
- Institute of Mathematics and Statistics, The University of Sao Paulo
- Technical University of Darmstadt
 
- Edição: Volume 509, Nº 1 (2023)
- Páginas: 50-55
- Seção: МЕХАНИКА
- URL: https://cardiosomatics.ru/2686-7400/article/view/651881
- DOI: https://doi.org/10.31857/S2686740023010054
- EDN: https://elibrary.ru/OXVIJA
- ID: 651881
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A.M. Polyakov suggested the programme to expand the symmetries admitted by hydrodynamic models to the conformal invariance of statistics in the inverse cascade where the conformal group is infinite-dimensional. In the present work, the group of transformations G of the \(n\)-point probability density function fn (PDF) is presented for the infinite chain of Lundgren–Monin–Novikov equations (the statistical form of the Euler equations) for vorticity fields of the two-dimensional inviscid flow. The problem is written in the Lagrangian setting. The main result is that the group G transforms conformally the zero-vorticity characteristics and invariantly a family of the fn-equations for PDF along these lines. The equations are not invariant along other characteristics. Moreover, the action of G conserves the class of PDF. The results obtained can be used for studying the invariance of statistical properties of the optical turbulence.
Sobre autores
V. Grebenev
Federal Research Center for Information and Computational Technologies
							Autor responsável pela correspondência
							Email: vngrebenev@gmail.com
				                					                																			                												                								Russia, Novosibirsk						
A. Grishkov
Institute of Mathematics and Statistics, The University of Sao Paulo
							Autor responsável pela correspondência
							Email: grishkov@ime.usp.br
				                					                																			                												                								Brazil, Sao Paulo						
M. Oberlack
Technical University of Darmstadt
							Autor responsável pela correspondência
							Email: oberlack@fdy.tu-darmstadt.de
				                					                																			                												                								Germany, Darmstadt						
Bibliografia
- Polyakov A.M. The theory of turbulence in two dimensions // Nuclear Phys. B. 1993. V. 396. N. 23. P. 367–385.
- Belavin A.A.,Polyakov A.M., Zamolodchikov A. A. Conformal field theory // Nuclear Phys. B. 1984. V. 241. P. 333–380.
- Bernard D., Boffetta G., Celani A., Falkovich G. Conformal invariance in two-dimensional turbulence // Nature Physics. 2006. V. 2. P. 124–128.
- Bernard D., Boffetta G., Celani A., Falkovich G. Inverse Turbulent Cascades and Conformally Invariant Curves // Phys. Rev. Lett. 2007. V. 98. P. 024501–504.
- Falkovich G. Conformal invariance in hydrodynamic turbulence // Russian Math. Surveys. 2007. V. 63. P. 497–510.
- Lundgren T.S. Distribution functions in the statistical theory of turbulence // Phys. Fluids. 1967. V. 10. P. 969–975.
- Monin A.S. Equations of turbulent motion // Prikl. Mat. Mekh. 1967. V. 31. P. 1057–1068.
- Novikov E.A. Kinetic equations for a vortex field // Sov. Phys. Dokl. V. 12. P. 1006-8.
- Grebenev V.N., Wacławczyk M., Oberlack M. Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence // J. Phys. A: Math. Theor. 2019. V. 50. P. 335501.
- Wacławczyk M., Grebenev V.N., Oberlack M. Conformal invariance of characteristic lines in a class of hydrodynamic models // Symmetry. 2020. V. 12. P. 1482.
- Wacławczyk M., Grebenev V.N., Oberlack M. Conformal invariance of the -point statistics of the zero-isolines of scalar fields in inverse turbulent cascades // Physical Review Fluids. 2021. V. 6. P. 084610.
- Friedrich R., Daitche A., Kamps O., Lülff J., Michel Voßkuhle M., Wilczek M. The Lundgren-Monin-Novikov hierarchy: Kinetic equations for turbulence // C.R. Physique. 2012. V. 13. P. 929–953.
- Madelung E. Quantentheorie in hydrodynamischer form // Zeitschrift für Physik. 1927. V. 40. P. 322–326.
- Bustamante M.D., Nazarenko S.V. Derivation of the Biot–Savart equation from the nonlinear Schrödinger equation // Phys. Rev. E. 2015. V. 92. P. 053019.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
