Функции распределения газа солитонов уравнения типа Кортевега – де Вриза
- Авторы: Пелиновский Е.Н.1,2, Гурбатов С.Н.3
- 
							Учреждения: 
							- Институт прикладной физики им А.В. Гапонова-Грехова Российской академии наук
- Национальный исследовательский университет – Высшая школа экономики
- Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
 
- Выпуск: Том 520, № 1 (2025)
- Страницы: 44-50
- Раздел: ФИЗИКА
- URL: https://cardiosomatics.ru/2686-7400/article/view/683274
- DOI: https://doi.org/10.31857/S2686740025010068
- EDN: https://elibrary.ru/GTYIVW
- ID: 683274
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Исследуются статистические свойства разреженного солитонного газа на примере уединенных волн – решений обобщенного уравнения Кортевега – де Вриза. Показано, что существует критическая плотность солитонного газа вне зависимости от типа нелинейности в обобщенном уравнении Кортевега – де Вриза, что связано с отталкиванием солитонов одинаковой полярности. Вычислены первые два статистических момента волнового поля (среднее значение и дисперсия), являющиеся одновременно инвариантами уравнения типа Кортевега – де Вриза. Рассчитаны плотности функции распределения разреженного солитонного газа. Отмечается особенность в этих функциях в области малых значений поля из-за перекрытия экспоненциальных хвостов солитонов.
Ключевые слова
Полный текст
 
												
	                        Об авторах
Е. Н. Пелиновский
Институт прикладной физики им А.В. Гапонова-Грехова Российской академии наук; Национальный исследовательский университет – Высшая школа экономики
							Автор, ответственный за переписку.
							Email: pelinovsky@ipfran.ru
				                					                																			                												                	Россия, 							Нижний Новгород; Нижний Новгород						
С. Н. Гурбатов
Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
														Email: gurb@rf.unn.ru
				                					                																			                												                	Россия, 							Нижний Новгород						
Список литературы
- Захаров В.Е. Кинетическое уравнение для солитонов // ЖЭТФ. 1971. Т. 60. С. 993–1000.
- El G.A. Soliton gas in integrable dispersive hydrodynamics // J. Stat. Mech. 2021. V. 11. 114001.https://doi.org/10.1088/1742-5468/ac0f6d
- Bonnemain T., Doyon B., El G. Generalized hydrodynamics of the KdV soliton gas // J. Phys. A: Math. Theor. 2022. V. 55. 374004. https://doi.org/10.1088/1751-8121/ac8253
- Congy T., El G., Tovbis R.A. Dispersive hydrodynamics of soliton condensates for the Korteweg–de Vries Equation // J. Nonlinear Sci. 2023. V. 33. 104. https://doi.org/10.1007/s00332-023-09940-y
- Suret P., Randoux S., Gelash A., Agafontsev D., Doyon B., El G. Soliton gas: theory, numerics and experiments // Physical Review E. 2024, V. 109. № 6. 061001. https://doi.org/10.1103/PhysRevE.109.061001
- Redor I. Barthelemy E., Michallet H., Onorato M., Mordant N. Experimental evidence of a hydrodynamic soliton gas // Physical Review Letters. 2019, V. 122. № 21. 214502. https://doi.org/10.1103/PhysRevLett.122.214502
- Fache L., Damart H., Copie F., Bonnemain T., Congy T., Roberti G., Suret P., El G., Randoux S. Dissipation-driven emergence of a soliton condensate in a nonlinear electrical transmission line // arXiv:2407.02874v1 [nlin.PS]. 2024. https://doi.org/10.48550/arXiv.2407.02874
- Costa A., Osborne A.R., Resio D.T., Alessio S., Chiriv E., Saggese E., Bellomo K.., Long C. E. Soliton turbulence in shallow water ocean surface waves // Phys. Rev. Lett. 2014. V. 113. 108501. https://doi.org/10.1103/PhysRevLett.113.108501
- Osborne A.R., Resio D.T., Costa A., de Leon S.P., Chiriv E. Highly nonlinear wind waves in Currituck Sound: dense breather turbulence in random ocean waves // Ocean Dynamics. 2019. V. 31. P. 187–219. https://doi.org/10.1007/s10236-018-1232-y
- Shurgalina E.G., Pelinovsky E.N. Nonlinear dynamics of a soliton gas: modified Korteweg-de Vries equation framework // Physics Letters A. 2016, V. 380. P. 2049–2053. https://doi.org/10.1016/j.physleta.2016.04.023
- Gelash A., Agafontsev D.S. Strongly interacting soliton gas and formation of rogue waves // Phys. Rev. E. 2018. V. 98. 042210. https://doi.org/10.1103/PhysRevE.98.042210
- Dutykh D., Pelinovsky E. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations // Physics Letters A 2014, V. 378, P. 3102–3110. https://doi.org/10.1016/j.physleta.2014.09.008
- Flamarion M.V., Pelinovsky E.N., Didenkulova E. Non-integrable soliton gas: the Schamel equation framework // Chaos, Solitons & Fractals. 2024. V. 180. 114495. https://doi.org/10.1016/j.chaos.2024.114495
- Schamel H., Chakrabarti N. On the evolution equations of nonlinearly permissible, coherent hole structures propagating persistently in collisionless plasmas // Ann. Phys. 2023. V. 535. 2300102. https://doi.org/10.1002/andp.202300102
- Могилевич Л.И., Блинков Ю. А., Попова Е.В., Попов В.С. Уединенные волны деформации в двух коаксиальных оболочках из материала с комбинированной нелинейностью, образующих стенки каналов кольцевого и круглого сечения, заполненных вязкой жидкостью // Известия вузов. Прикладная нелинейная динамика. 2024. Т. 32. № 4. С. 521–540. https://doi.org/10.18500/0869-6632-003115
- Гурбатов С.Н., Малахов А.Н., Саичев А.И. Нелинейные случайные волны в средах без дисперсии. М.: Наука, 1990. 216 c.
- Гурбатов С.Н., Руденко О.В., Саичев А.И. Волны и структуры в нелинейных средах без дисперсии. Приложения к нелинейной акустике. М.: Физматлит, 2008. 496 с.
- Шургалина Е.Г., Пелиновский Е.Н. Динамика ансамбля нерегулярных волн в прибрежной зоне. Нижний Новгород: НГТУ, 2015. 179 с.
- El G.A. Critical density of a soliton gas // Chaos. 2016. V. 26. 023105. https://doi.org/10.1063/1.4941372
- Руденко О.В., Чиркин А.С. О статистике шумовых разрывных волнах в нелинейных средах // ДАН СССР. 1975. Т. 225. № 3. С. 520–523.
- Руденко О.В. Взаимодействие интенсивных шумовых волн // Успехи физ наук. 1986. Т. 149. № 3. С. 413–447. https://doi.org/10.3367/UFNr.0149.198607c.0413
- Гурбатов С.Н., Пелиновский Е.Н. О вероятностных распределениях римановой волны и интеграла от нее // Доклады РАН. Физика, технические науки. 2020. T. 493. № 1. С. 18–22. https://doi.org/10.31857/S2686740020040070
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




