Synthesis of diamond films with reduced roughness in microwave plasma
- Autores: Martyanov А.K.1, Tiazhelov I.A.1, Savin S.S.2, Popovich A.F.1, Sedov V.S.1, Konov V.I.1
-
Afiliações:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- MIREA – Russian Technological University
- Edição: Volume 516, Nº 1 (2024)
- Páginas: 28-31
- Seção: ФИЗИКА
- URL: https://cardiosomatics.ru/2686-7400/article/view/651782
- DOI: https://doi.org/10.31857/S2686740024030046
- EDN: https://elibrary.ru/KAHZCC
- ID: 651782
Citar
Resumo
The work studies the effect of nitrogen additions on the secondary nucleation (nucleation) of diamond during its synthesis by chemical vapor deposition (CVD). A series of polycrystalline diamond (PCD) films 2 μm thick were grown on silicon substrates in methane-hydrogen-nitrogen gas mixtures with different nitrogen concentrations (0–1%). The structure and roughness of the grown films were studied using scanning electron microscopy (SEM) and optical profilometry. It has been shown that small additions of nitrogen play a key role in the processes of secondary nucleation of diamond, having a significant impact on the morphology of films. The comparison of the characteristics of grown PCD allowed us to find the optimal nitrogen concentration [N2] ≈ 0.2% for the formation of nanocrystalline diamond (NCD) films with low surface roughness and increased growth rate. The results obtained are expected to be used to optimize the parameters of CVD synthesis of PCD films for use as protective or friction-reducing layers, as well as for the manufacture of superhard cutting tools.
Texto integral

Sobre autores
А. Martyanov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: martyanov@nsc.gpi.ru
Rússia, Moscow
I. Tiazhelov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: martyanov@nsc.gpi.ru
Rússia, Moscow
S. Savin
MIREA – Russian Technological University
Email: martyanov@nsc.gpi.ru
Rússia, Moscow
A. Popovich
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: martyanov@nsc.gpi.ru
Rússia, Moscow
V. Sedov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: martyanov@nsc.gpi.ru
Rússia, Moscow
V. Konov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: martyanov@nsc.gpi.ru
Academician of the RAS
Rússia, MoscowBibliografia
- Lucca D.A., Klopfstein M.J., Riemer O. Ultra-precision machining: cutting with diamond tools // J. Manufacturing Science and Engineering. 2020. V. 142. № 11. P. 110817.
- Abdullah M.F., Hussin M.R.M., Ismail M.A., et al. Chip-level thermal management in GaN HEMT: Critical review on recent patents and inventions // Microelectronic Engineering. 2023. P. 111958.
- Dobrinets I.A., Vins Victor.G., Zaitsev A.M. HPHT-Treated Diamonds: Diamonds Forever. 2013accessed. V. 181.
- Sedov V.S., Martyanov A.K., Khomich A.A., et al. Deposition of diamond films on Si by microwave plasma CVD in varied CH4-H2 mixtures: Reverse nanocrystalline-to-microcrystalline structure transition at very high methane concentrations // Diamond and Related Materials. 2020. V. 109. P. 108072.
- Mandal S. Nucleation of diamond films on heterogeneous substrates: a review // RSC Adv. 2021. V. 11. № 17. P. 10159–10182.
- Butler J.E., Cheesman A., Ashfold M.N.R. Recent progress in the understanding of CVD growth of diamond // CVD Diamond for Electronic Devices and Sensors. 2009. P. 103–124.
- Drift A. Van der. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers // Philips Res. Rep. 1967. V. 22. № 3. P. 267.
- Ralchenko V.G., Pleuler E., Lu F.X., et al. Fracture strength of optical quality and black polycrystalline CVD diamonds // Diamond and Related Materials. 2012. V. 23. P. 172–177.
- Aslantas K., Hopa H.E., Percin M., et al. Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy // Precision Engineering. 2016. V. 45. P. 55–66.
- Kulisch W., Popov C. On the growth mechanisms of nanocrystalline diamond films // physica status solidi (a). 2006. V. 203. № 2. P. 203–219.
- Fuentes-Fernandez E.M.A., Alcantar-Peña J.J., Lee G., et al. Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications // Thin Solid Films. 2016. V. 603. P. 62–68.
- Bénédic F., Belmahi M., Elmazria O., et al. Investigations on nitrogen addition in the CH4–H2 gas mixture used for diamond deposition for a better understanding and the optimisation of the synthesis process // Surface and Coatings Technology. 2003. V. 176. № 1. P. 37–49.
- Asmussen J., Mossbrucker J., Khatami S., et al. The effect of nitrogen on the growth, morphology, and crystalline quality of MPACVD diamond films // Diamond and Related Materials. 1999. V. 8. № 2. P. 220–225.
- Мартьянов А.К., Седов В.С., Заведеев Е.В. и др. Синтез мультислойных алмазных пленок в СВЧ плазме в режимах с периодической инжекцией азота // Доклады РАН. Физика, технические науки. 2021. Т. 496. С. 44–47.
- Sedov V., Martyanov A., Altakhov A., et al. Effect of Substrate Holder Design on Stress and Uniformity of Large-Area Polycrystalline Diamond Films Grown by Microwave Plasma-Assisted CVD // Coatings. 2020. V. 10. № 10. P. 939.
Arquivos suplementares
