A NEW APPROACH TO THE SYNTHESIS OF HIGHLY DISPERSED DOUBLE LITHIUM-NICKEL AND DOUBLE LITHIUM-COBALT PHOSPHATES WITH THE DESIGNED PARTICLE MORPHOLOGY
- Autores: Zharov N.V.1, Maslova M.V.1, Nikolaev A.I.1
- 
							Afiliações: 
							- I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the Russian Academy of Sciences Kola Science Center
 
- Edição: Volume 513, Nº 1 (2023)
- Páginas: 93-99
- Seção: CHEMICAL TECHNOLOGY
- URL: https://cardiosomatics.ru/2686-9535/article/view/651937
- DOI: https://doi.org/10.31857/S2686953523600228
- EDN: https://elibrary.ru/ZPMRMY
- ID: 651937
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper presents a new low-temperature method for the synthesis of highly dispersed powders of double phosphates LiCoPO4 and LiNiPO4 using low-waste technology. It has been shown that the morphology and particle size of the obtained materials depend on the type of initial precursors. The obtained compounds are characterized by elemental, XRD, SEM, cyclic volammetry, cyclic chronopotentiometry analyses. A new approach to the synthesis of submicron powders of lithium double phosphates and transition metal (nickel, cobalt) is more effective compared to current methods.
Palavras-chave
Sobre autores
N. Zharov
I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materialsof the Russian Academy of Sciences Kola Science Center
							Autor responsável pela correspondência
							Email: n.zharov@ksc.ru
				                					                																			                												                								Russian Federation, 184209, Apatity						
M. Maslova
I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materialsof the Russian Academy of Sciences Kola Science Center
														Email: n.zharov@ksc.ru
				                					                																			                												                								Russian Federation, 184209, Apatity						
A. Nikolaev
I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materialsof the Russian Academy of Sciences Kola Science Center
														Email: n.zharov@ksc.ru
				                					                																			                												                								Russian Federation, 184209, Apatity						
Bibliografia
- Kraytsberg A., Ein-Eli Y. // Adv. Energy Mater. 2012. V. 2. № 8. P. 922–939. https://doi.org/10.1002/aenm.201200068
- Song S., Peng X., Huang K., Zhang H., Wu F., Xiang Y., Zhang X. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8
- Кулова Т.Л. // Электрохимия. 2013. Т. 49. № 1. С. 3–28. https://doi.org/10.7868/S0424857013010118
- Örnek A. // J. Colloid Interface Sci. 2017. V. 504. P. 468–478. https://doi.org/10.1016/j.jcis.2017.05.118
- Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., Bake-nov Zh., Mentbayeva A. // J. Alloys Compd. 2021.V. 882. P. 160774. https://doi.org/10.1016/j.jallcom.2021.160774
- Cheng Q., Zhao X., Yang G., Mao L., Liao F., Chen L., He P., Pan D., Chen Sh. // Energy Stor. Mater. 2021. V. 41. P. 842–882. https://doi.org/10.1016/j.ensm.2021.07.017
- Kosova N.V., Podgornova O.A., Devyatkina E.T., Podugolnikov V.R., Petrov S.A. // J. Mater. Chem. A. 2014. V. 2. P. 20697–20705. https://doi.org/10.1039/C4TA04221B
- Herle P., Ellis B., Coombs N., Nazar L.F. // Nat. Mater. 2004. V. 3. № 3. P. 147–152. https://doi.org/10.1038/nmat1063
- Biendicho J.J., West A.R. // Solid State Ion. 2011. V. 203. № 1. P. 33–36. https://doi.org/10.1016/j.ssi.2011.08.006
- Truong Q.D., Devaraju M.K., Tomai T., Honma I. // ACS Appl. Mater. Interfaces. 2013. V. 5. № 20. P. 9926–9932. https://doi.org/10.1021/am403018n
- Kempaiah Devaraju M., Duc Truong Q., Hyodo H., Sasaki Y., Honma I. // Sci. Rep. 2015. V. 5. P. 11041. https://doi.org/10.1038/srep11041
- Pourhakkak P., Taghizadeh A., Taghizadeh M., Ghaedi M., Haghdoust S. // Interface Sci. Technol. 2021. V. 33. P. 1–70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
- Li Z., Peng Z., Zhang H., Hu T., Hu M., Zhu K., Wang X. // Nano Lett. 2016. V. 16. №. 1. P. 795–799. https://doi.org/10.1021/acs.nanolett.5b04855
- Ludwig J., Nilges T. // J. Power Sources. 2018. V. 382. P. 101–115. https://doi.org/10.1016/j.jpowsour.2018.02.038
- Karafiludis S., Buzanich A.G., Heinekamp C., Zimathies A., Smales J.G., Hodoroaba V.-D., ten Elshof J.E., Emmerling F., Stawski T.M. // Nanoscale. 2023. V. 15. № 8. P. 3952–3966. https://doi.org/10.1039/D2NR05630E
- Zhang M., Garcia-Araez N., Hector A. L. // J. Mater. Chem. A. 2018. V.6 № 30. P. 14483–14517. https://doi.org/10.1039/C8TA04063J
- Sreedeep S., Natarajan S., Aravindan V. // Curr. Opin. Electrochem. 2022. V. 31. P. 100868. https://doi.org/10.1016/j.coelec.2021.100868
- Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M.A., Schall N., Bruenig C. // Electrochem. Commun. 2012. V. 15. № 1. P. 22–25. https://doi.org/10.1016/j.elecom.2011.11.014
- Маслова М.В., Жаров Н.В., Иваненко В.И. Способ получения двойного ортофосфата лития и переходного металла. Патент RU 2022 120 287 A от 01.03.2023 г.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





