About tautochronic movements
- Autores: Petrov A.G.1
- 
							Afiliações: 
							- Ishlinsky Institute of Mechanics Problems of RAS
 
- Edição: Volume 518 (2024)
- Páginas: 22-28
- Seção: MATHEMATICS
- URL: https://cardiosomatics.ru/2686-9543/article/view/647985
- DOI: https://doi.org/10.31857/S2686954324040045
- EDN: https://elibrary.ru/YZNYQS
- ID: 647985
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
It is shown that a material point, under the influence of an attractive linear force and a repulsive force inversely proportional to the cube of the distance from the center of attraction, performs a periodic motion, the period of which does not depend on the initial data (tautochronic motion). The problem is reduced to a nonlinear autonomous second-order equation, the general solution of which is expressed in terms of elementary functions. It has also been proven that for other power laws of repulsive force, except for degrees 0, 1 and –3, the movement of a material point is not tautochronous.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Petrov
Ishlinsky Institute of Mechanics Problems of RAS
							Autor responsável pela correspondência
							Email: petrovipmech@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Аппель P. Теоретическая механика. Т. 1. Физ. мат. лит. М., 1960 / Appel P. Traité de mécanique rationnelle – Tome premier statique-dynamique du point 1902.
- Ландау Л.Д., Лифшиц Е.М. Механика. Физ. мат. лит. М., 1965
- Osypowski E.T., Olsson M.G. Isynchronous motion in classical mechanics // Am.J. Phys. 1987. V. 55. P. 720–725.
- Chalykh O.A., Veselov A.P. A Remark on Rational Isochronous Potentials Journal of Nonlinear Mathematical Physics Volume 12, Supplement 1. 2005. P. 179–183.
- Буданов В.М. Об одной изохронной нелинейной системе. // Вестн. моск. ун-та. сер.1, математика. механика. 2013. № 6. С. 59–63. / V.M. Budanov, On a nonlinear isochronous system. Moscow Univ. Mech. Bull. 68, (2013).
- Биркгоф Д.Д. Динамические системы. Ижевск; Издательский дом “Удмуртский университет”, 1999, 408 с. / Birkhoff D. Dynamical Systems. Publisher, Edwards, 1927
- Журавлев В.Ф. Основы теоретической механики. М.: ФИЗМАТЛИТ, 2008. 304 с./ Zhuravlev V.F. Fundamentals of Theoretical Mechanics. М.: FIZMATLIT, 2008. 304 с. (in Russian)
- Журавлев В.Ф. Инвариантная нормализация неавтономных гамильтоновых систем. // ПММ, 2002. Т. 66. Вып. 3. С. 356–365. / Zhuravlev V. Ph. Invariant normalization of non-autonomous Hamiltonian systems J. Applied Mathematics and Mechanics. 2004. V. 66. № 3. P. 356–365
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


