BICOMPACT SCHEMES FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS
- Autores: Bragin M.D.1
- 
							Afiliações: 
							- Keldysh Institute of Applied Mathematics Russian Academy of Sciences
 
- Edição: Volume 509 (2023)
- Páginas: 17-22
- Seção: MATHEMATICS
- URL: https://cardiosomatics.ru/2686-9543/article/view/647850
- DOI: https://doi.org/10.31857/S2686954322600677
- EDN: https://elibrary.ru/CRZYJT
- ID: 647850
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.
Sobre autores
M. Bragin
Keldysh Institute of Applied Mathematics Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: michael@bragin.cc
				                					                																			                												                								Russia, Moscow						
Bibliografia
- Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
- De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
- Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
- Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
- Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
- Михайловская М.Н., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
- Rogov B.V. // Appl. Numer. Math. 2019. V. 139. P. 136–155.
- Брагин М.Д., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1759–1778.
- Bragin M.D. // Appl. Numer. Math. 2022. V. 174. P. 112–126.
- Брагин М.Д. // Матем. моделирование. 2022. Т. 34. № 6. С. 3–21.
- Douglas J., Dupont T.F. // Numerical Solution of Partial Differential Equations II / ed. by B. Hubbard. Academic Press, 1971. P. 133–214.
- Duchemin L., Eggers J. // J. Comput. Phys. 2014. V. 263. P. 37–52.
- Wang H., Zhang Q., Wang S., Shu C.-W. // Sci. China Math. 2020. V. 63. P. 183–204.
- Shu C.-W. // Advanced Numerical Approximation of Nonlinear Hyperbolic Equations / ed. by A. Quarteroni, V. 1697 of Lecture Notes in Mathematics. Springer, 1998. P. 325–432.
- Daru V., Tenaud C. // Comput. Fluids. 2001. V. 30. P. 89–113.
- Bragin M.D., Rogov B.V. // Appl. Numer. Math. 2020. V. 151. P. 229–245.
- Wang Z., Zhu J., Tian L., Zhao N. // J. Comput. Phys. 2021. V. 429. P. 110006.
- Sjögreen B., Yee H.C. // J. Comput. Phys. 2003. V. 185. P. 1–26.
- Yee H.C., Sandham N.D., Djomehri M.J. // J. Comput. Phys. 1999. V. 150. P. 199–238.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



